

ANALYSIS OF WEB

SERVICES STANDARDS

FINAL

13 NOVEMBER 2003

DEFENSE INFORMATION SYSTEMS AGENCY

Analysis of Web Services Standards

i

Table of Contents

Executive Summary...ES 1

ES.1 Purpose and Scope ...ES 1

ES.2 Major Findings ...ES 1

ES.3 Recommendations ..ES 3

ES.4 Conclusions ..ES 4

1 Introduction... 1

1.1 Conventions .. 1

1.2 How to Read this Document ... 1

1.3 Section Overview.. 2

2 Web Services... 4

2.1 Web Services defined.. 4

2.2 Characteristics of Web Services ... 4

2.2.1 The Ideal Middleware ... 5

2.2.2 Web Services as Ideal Middleware ... 5

2.3 Foundations of Web Services ... 6

2.3.1 Extensible Markup Language (XML)... 6

2.3.2 XML Schema .. 8

2.3.3 Simple Object Access Protocol (SOAP) ... 9

2.3.4 Web Services Description Language (WSDL) ... 11

3 Web Services Architectures.. 14

3.1 Message Exchange Patterns .. 14

3.1.1 One-Way ... 14

3.1.2 Request/Response ... 14

3.1.3 Solicit Response .. 15

3.1.4 Notification ... 15

3.2 Architecture Types .. 16

3.2.1 Service Oriented Architecture (SOA)... 16

3.2.2 Peer-To-Peer (P2P) ... 17

3.2.3 Enterprise Bus ... 17

3.2.4 Grid Computing .. 18

3.3 Specific Architectures... 18

Analysis of Web Services Standards

ii

3.3.1 W3C Web Services Architecture (WSA).. 19

3.3.2 Global XML Web Services Architecture (GXA) 22

3.3.3 Electronic Business XML (ebXML)... 24

3.3.4 General Recommendations ... 27

3.4 References ... 27

4 Web Services and Messaging ... 29

4.1 Transfer Protocols ... 29

4.1.1 HTTP and Other Known Transfer Protocols .. 29

4.1.2 Message-Oriented Middleware (MOM) ... 30

4.1.3 Recommendation .. 30

4.2 Messaging and Attachments ... 30

4.2.1 Specification and Status .. 30

4.2.2 Main Concepts .. 31

4.2.3 Recommendation .. 31

4.3 Reliable Messaging ... 31

4.3.1 Specification and Status .. 32

4.3.2 Main Concepts .. 32

4.3.3 Recommendation .. 33

4.3.4 WS-Routing/WS-Referral (GXA)... 33

4.3.5 Binary XML and XML Compression... 35

5 Web Services and Security ... 37

5.1 Security Framework - OASIS Web Services Security (WS-Security) 38

5.1.1 Specification and Status .. 38

5.1.2 Main Concepts .. 38

5.1.3 Assessment.. 40

5.1.4 Implementations.. 41

5.1.5 Recommendation .. 41

5.2 Authentication/Identity Management ... 41

5.2.1 OASIS Security Assertion Markup Language (SAML) 41

5.2.2 Liberty Alliance .. 46

5.2.3 WS-Federation (GXA).. 49

5.2.4 OASIS XML Common Biometric Format (XCBF).................................. 52

5.3 Integrity/Non-Repudiation.. 55

Analysis of Web Services Standards

iii

5.3.1 Web Services Secure Conversation Language (WS-SecureConversation)
 55

5.4 Confidentiality .. 57

5.5 Trust .. 58

5.5.1 W3C Signature .. 58

5.5.2 WS-Trust (GXA)... 58

5.6 Authorization/Policy... 61

5.6.1 OASIS eXtensible Access Control Markup Language (XACML) 61

5.6.2 W3C Open Digital Rights Language (ODRL).. 64

5.6.3 OASIS eXtensible Rights Markup Language (XrML) 67

5.6.4 Web Services Policy Framework (WS-Policy) ... 69

5.7 General Recommendations ... 72

5.8 References ... 72

6 Interoperability of Web Services .. 75

6.1 Specification and Status .. 75

6.2 Main Concepts .. 75

6.3 Recommendation .. 76

7 Web Services Choreography and Coordination.. 77

7.1 W3C Web Services Choreography ... 77

7.1.1 Web Services Choreography Concepts... 77

7.1.2 W3C Web Services Choreography Interface (WSCI) 78

7.1.3 OASIS Web Services Business Process Execution Language (WS BPEL)
 81

7.1.4 Web Services Transaction (WS-Transaction)/ Web Services Coordination
(WS-Coordination) .. 84

7.1.5 OASIS Web Services Composite Application Framework (WS-CAF) ... 85

7.2 General Recommendations ... 88

7.3 References ... 89

8 Web Services and Discovery .. 90

8.1 Universal Description, Discovery, and Integration (UDDI)............................. 90

8.1.1 Specification and Status .. 90

8.1.2 Main Concepts .. 90

8.1.3 Assessment.. 92

Analysis of Web Services Standards

iv

8.1.4 Implementations.. 93

8.1.5 Recommendation .. 93

8.2 ebXML Registry ... 93

8.2.1 Specification and Status .. 93

8.2.2 Main Concepts .. 94

8.2.3 Assessment.. 95

8.2.4 Implementations.. 95

8.2.5 Recommendation .. 95

8.3 General Recommendations ... 96

8.4 References ... 96

9 The Semantic Web .. 98

9.1 W3C Web Ontology Language (OWL).. 98

9.1.1 Specification and Status .. 99

9.1.2 Main Concepts .. 99

9.1.3 Implementations.. 99

9.1.4 Recommendation .. 99

9.2 DARPA Agent Markup Language – Semantic (DAML-S) 100

9.2.1 Specification and Status .. 100

9.2.2 Main Concepts .. 100

9.2.3 Implementations.. 101

9.2.4 Recommendation .. 101

9.3 Topic Maps ... 101

9.3.1 Specification and Status .. 101

9.3.2 Main Concepts .. 101

9.3.3 Implementations.. 102

9.3.4 Recommendation .. 102

10 Web Services Monitoring and Management ... 104

10.1 Specification and Status .. 104

10.2 Main Concepts .. 104

10.3 Recommendation .. 105

11 Applications of Web Services... 106

11.1 OASIS Web Services for Remote Portlets.. 106

11.1.1 Specification and Status .. 106

Analysis of Web Services Standards

v

11.1.2 Main Concepts .. 106

11.1.3 Assessment.. 107

11.1.4 Implementations.. 107

11.1.5 Recommendation .. 107

11.1.6 References ... 108

11.2 Geospatial Web Services .. 108

11.2.1 Specification and Status .. 108

11.2.2 Main Concepts .. 109

11.2.3 Implementations.. 110

11.2.4 Recommendation .. 110

11.3 Sensor Web Services... 110

11.3.1 Specification and Status .. 110

11.3.2 Main Concepts .. 110

11.3.3 Implementations.. 111

11.3.4 Recommendation .. 111

12 Preliminary Conclusions and Recommendations ... 112

Appendix A – Referenced Online Content ... 116

Analysis of Web Services Standards

vi

List of Tables

Table 3.1 Assessment of W3C Web Services Architecture... 21

Table 3.2 GXA Specifications ... 23

Table 4.1 Assessment of WS-Routing/WS-Referral ... 35

Table 5.1 Security Functionality Categories.. 37

Table 5.2 Assessment of WS-Security... 40

Table 5.3 Assessment of SAML.. 45

Table 5.4 Assessment of Liberty Alliance ... 48

Table 5.5 Assessment of WS-Federation... 52

Table 5.6 Assessment of XCBF ... 54

Table 5.7 Assessment of WS-SecureConversation.. 57

Table 5.8 Assessment of WS-Trust ... 60

Table 5.9 Assessment of XACML... 64

Table 5.10 Assessment of ODRL .. 66

Table 5.11 Assessment of XrML... 68

Table 5.12 Assessment of WS-Policy.. 71

Table 7.1 Assessment of WSCI ... 80

Table 7.2 Assessment of WS BPEL .. 83

Table 7.3 Assessment of WS-Transaction/WS-Coordination ... 85

Table 7.4 Assessment of WS-CAF .. 87

Table 8.1 Assessment of UDDI ... 92

Table 8.2 Assessment of ebXML Registry.. 95

Table 11.1 Assessment of WSRP .. 107

Analysis of Web Services Standards

vii

List of Figures

Figure 2.1 The SOAP Message Model .. 10

Figure 2.2 The Main Components of a WSDL Description.. 12

Figure 3.1 One-Way Message Exchange Pattern... 14

Figure 3.2 Request/Response Message Exchange Pattern... 15

Figure 3.3 Solicit Response Message Exchange Pattern ... 15

Figure 3.4 Notification Message Exchange Pattern... 15

Figure 3.5 Publish/Find/Bind Triangle .. 17

Figure 3.6 Enterprise Service Bus ... 18

Figure 3.7 W3C Web Services Architecture.. 20

Figure 3.8 ebXML Conceptual Overview ... 26

Figure 5.1 WS-Security Context Participants .. 39

Figure 5.2 The SAML Domain Model .. 43

Figure 5.3 Concept of Single Sign-on.. 44

Figure 5.4 Federated Network Identity and Circles of Trust ... 47

Figure 5.5 Federated Network Identity and Circles of Trust ... 47

Figure 5.6 WS-Federation Model .. 50

Figure 5.7 Using Security Tokens in WS-Federation.. 51

Figure 5.8 Use of Trust Engines in WS-Trust ... 59

Figure 5.9 WS-Trust Interactions .. 60

Figure 5.10 ODRL Foundational Model.. 65

Figure 5.11 XrML Concepts and Relationships .. 68

Figure 7.1 WSCI Interfaces and Collaboration.. 78

Figure 7.2 WSCI Placement in the Web Services “Stack”.. 79

Figure 7.3 Example of BPEL4WS Process.. 81

Figure 7.4 WS-CAF Specifications by Domain .. 87

Figure 8.1 UDDI Core Data Structures.. 92

Figure 9.1 The Top Levels of the Service Ontology ... 100

Figure 11.1 WSRP Mechanism for Aggregating Portlets using Proxies 107

Figure 11.2 O&M Observation Object Model... 111

Analysis of Web Services Standards

ES 1

Executive Summary

ES.1 Purpose and Scope

This report represents the analysis of current Web Services specifications, standards,
and proposed standards emerging primarily from commercial industry consortiums,
with a focus on standards that are relevant to the development of next generation DoD
Command and Control (C2) systems.

ES.2 Major Findings

• "Base" Web Services Standards

The "base" Web Services standards (such as Web Services Definition Lan-
guage—WSDL—and Simple Object Access Protocol—SOAP) are advancing
within W3C. These standards are being adopted broadly but still show some im-
maturity. The latest versions of WSDL and SOAP have not been widely imple-
mented. Currently these standards don’t guarantee unambiguous interoperability.

• Web Services Architectures/Frameworks

There are multiple efforts to define concrete Web Services architectures. The ma-
jor effort in this area is the W3C Web Services Architecture.

The Global XML Web Services Architecture (GXA) specifications are being ad-
vanced into open standards consortiums slowly. Only WS-Security has been
transferred into an open standards consortium (OASIS).

• Web Services Security

The current lack of overall robust security makes it difficult to execute Web Ser-
vices scenarios that stretch beyond "point-to-point" interactions. Point-to-point
Web Service interactions using established mechanisms such as traditional Public
Key Infrastructure (PKI) and Secure Socket Layer/Transport Layer Security
(SSL/TLS) are well established, however.

A large number of potential standards in the realm of security for Web Services
are emerging and will mature in the next two years. The emerging OASIS WS-
Security specification will have the largest single impact, and its advancement to
OASIS standard level is imminent.

• Web Services Choreography and Coordination

The choreography and coordination of Web Services can enable inter-
organization and inter-agency collaborations. The W3C Web Services Choreog-
raphy Working Group and the OASIS Web Services Business Process Execution
Language (WS BPEL) Technical Committee are beginning to explore this area,
but there is a long way to go. Advancements in this area will enable inter-
organization and inter-agency collaborations of Web Services.

• Web Services and Discovery

The current UDDI specifications are still immature and are not specific enough to
guarantee portability or interoperability. The weaknesses can be overcome by

Analysis of Web Services Standards

ES 2

limiting the use of UDDI implementations to only standard features and augment-
ing the UDDI usage by adopting standard practices to achieve the goals for dis-
covery.

The use of service-oriented architectures requires efficient mechanisms by which
to discover Web Services descriptions, such as WSDL documents. UDDI serves
an important purpose in this regard for both DISA and the federal government,
and its adoption is currently on the rise.

The adoption of ebXML Registry has in general been low. However, as adoption
of XML grows both within DISA and the federal government, and as more and
more XML Schemas are created, the need for an XML registry (such as ebXML
Registry) will increase correspondingly.

Both ebXML Registry and UDDI will co-exist and can work together.

• Web Services and Reliable Messaging

The only open standard that addresses reliable messaging for Web Services is the
ebXML Messaging Service (ebMS) specification, but there has not been wide-
spread adoption of this standard. An OASIS Technical Committee (Web Services
Reliable Messaging—WSRM) is addressing an open standard for reliable messag-
ing.

• Web Services Interoperability

The Web Services Interoperability Organization (WS-I) is defining how to
achieve interoperability between Web Services standards, but there are few ven-
dor implementations. Guidelines and specifications like WS-I will go a long way
toward supporting multi-vendor interoperability by removing the specification
ambiguities. We anticipate wide-spread adoption of WS-I.

• Semantic Web Services

The area of Semantic Web Services is producing specifications (such as the OWL
Web Service Ontology Language, OWL-S) that are currently in the research
stages. The W3C is a strong proponent of OWL as part of its Semantic Web vi-
sion. There is a need for something like OWL, for instance, in discovery services.

• Web Services Monitoring and Management

There are no released specifications in this important area. There is community
interest and at least one early proposal.

• Standards Related to Applications of Web Services

o OASIS Web Services for Remote Portlets (WSRP) deliver aggregated
content to a centralized location. A fair number of WSRP implementations
are available.

o The OGC, an international consortium with significant DoD involvement,
has developed a number of Web Services standards for geospatial data
sharing, processing, and display. These standards will play a key role in
promoting interoperability between C2 systems.

Analysis of Web Services Standards

ES 3

ES.3 Recommendations

• "Base" Web Services Standards

The "base" Web Services standards (such as Web Services Definition Lan-
guage—WSDL—and Simple Object Access Protocol—SOAP) should be treated
as immature. They should not be regarded as guaranteeing unambiguous interop-
erability. Organizations such as the DoD, or more likely sub-communities within
the DoD, should set forth interoperability guidelines and examples to ensure de-
velopers that use this technology use it consistently.

HTTP(S) and XML should be used for Web Services. XML Schema should be
used instead of DTDs.

• Web Services Architectures/Frameworks

The W3C Web Services Architecture should be watched closely.

The Global XML Web Services Architecture (GXA) specifications should be
watched because of the wide range of functionality that they would cover, if they
were transferred into an open standards consortium.

DISA should not adopt the ebXML framework as a whole, but should only con-
sider individual specifications such as ebXML Registry.

• Web Services Security

DISA should utilize Web Services at this time, but only in point-to-point interac-
tions using established mechanisms such as traditional Public Key Infrastructure
(PKI) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

OASIS Security Assertion Markup Language (SAML) should be used at this time.

• Web Services Choreography and Coordination

The work of the W3C Web Services Choreography Working Group bears close
watching, as does the emerging work of the OASIS Web Services Business Proc-
ess Execution Language (WS BPEL) Technical Committee.

• Web Services and Discovery

The use of UDDI implementations should be limited to only standard features.
The use of UDDI should be accompanied by adopting standard practices to
achieve the goals for discovery.

In the future, some of the emerging ontology standards (e.g., OWL), should be
used to allow searches based on concepts rather than on specific terms that must
now be matched exactly.

DISA should use UDDI Version 2.0 specification implementations for the time
being for its Web Services efforts, and upgrade to Version 3.0 when that becomes
an OASIS standard and when an acceptable number of implementations are avail-
able.

Analysis of Web Services Standards

ES 4

Once the OASIS/ebXML Registry Version 2.5 specifications reach a Version 3.0
status, an assessment should be made regarding available implementations and
consideration should be given to implementing ebXML Registry.

• Web Services and Reliable Messaging

The area of reliable messaging should be watched to see which specification
emerges as the leader from the current ones.

• Web Services Interoperability

DISA should hold off from utilizing any of the Web Services Interoperability Or-
ganization (WS-I) profiles (such as the WS-Basic Profile) until more vendor im-
plementations emerge.

• Semantic Web Services

DISA should watch the area of Semantic Web Services for ontology language
standards.

• Web Services Monitoring and Management

DISA evaluate the OASIS Web Services Distributed Management (WSDM)
specifications once they are released.

• Standards Related to Applications of Web Services

Although a number of OASIS Web Services for Remote Portlets (WSRP) imple-
mentations are available, DISA should wait about 6 months before recommending
widespread use in the DoD.

• Geospatial Web Services

DISA should use OGC standards for promoting interoperability between C2 sys-
tems, as well as for supporting competitive procurement.

ES.4 Conclusions

In general, Web Services are usable and useful today, but implementers must get past
the general myth that the current Web Services standards guarantee interoperability.
Interoperability is enhanced by these standards, mainly through simplification, such
as using ubiquitous communications channels (HTTP), and a simplified, man-
readable, yet structured and flexible data format (XML). However, the key to interop-
erability is the semantics of the connection. Additional standards including XML
Schema, SOAP, and WSDL also add value, but still do not clearly convey the seman-
tics without human intervention. To solve the problem additional specifications (in-
cluding application-specific specifications) need to be adopted.

The DoD should continue and expand upon current efforts to use Web Services stan-
dards as an alternative to traditional means of creating systems. Providing a more
open environment to support access to the services and data of C2 systems will foster
new and more creative solutions which can leverage a wide array of sensors and data-
bases.

Analysis of Web Services Standards

1

1 Introduction

This report presents the results of an analysis of Web Service standards that may support
DoD requirements. It is the first in a series of papers that will also include:

• Web Service Standard C2 User Requirements
• Emerging Web Services Development Environment

This overall effort involves analysis of existing and emerging (proposed) standards sup-
porting Web Services, and evaluates the potential impact on DoD Command and Control
(C2), in order to:

(1) Influence use of commercial standards to promote DoD interests

(2) Develop and convey an understanding of Web Services standards issues from a
variety of Web Services standard organizations; and

(3) Disseminate timely information concerning commercial standards to DoD users.

1.1 Conventions

As with any written document, this report only represents a snapshot of the specifica-
tions, standards, consortium documents, and vendor products. It was the intent of the
analysts to cover all technologies related to the implementation of Web Services in the
C2 domain. However, this does not imply that all specifications and products were found
and/or recognized to be relevant; in other words, some relevant specifications or products
may have been unintentionally omitted. Others may soon appear as new or now relevant,
but were not in time to be included in this document.

In this report, specifications are described in detail if the majority of the industry cur-
rently recognizes them as official standards, or if they appear to be clearly headed toward
standardization in order to fill a known gap in the successful and broad application of
Web Services.

Some vendor implementations of the standards are also listed for the convenience of the
reader. Readers are strongly advised to consider both the inevitable biases of individuals
evaluating these products, and the changing landscape where new and/or upgraded prod-
ucts are constantly emerging. The products listed likely do not represent the only, or
even the best implementations of the specifications. A product is included if it has strong
market presence and possibly (if found) good reviews relative to the implementation of
the standard.

1.2 How to Read this Document

This report is both an overview of the current Web Services landscape and a reference for
technologists that want to gain a thorough understanding of the technologies and how
they apply. It is not meant to be read continuously, cover-to-cover. A recommended
reading pattern is to start with the Section Overview, below, to select interest areas; then,
for each section and subsection of interest, read the introductory paragraphs at the begin-
ning, and the Recommendations at the end of each subsection. At this point, the final
section on Conclusions and Recommendations will be easier to follow. Reading the re-
maining detail may be left to only those subsections of strong technical interest.

Analysis of Web Services Standards

2

1.3 Section Overview

This Analysis of Web Services Standards presents the following major sections:

Section 2 Web Services

This section introduces the concept of Web Services; the foundational specifica-
tions that support this concept, such as XML, SOAP, WSDL, and UDDI; and the
standards consortiums invo lved in the current evolution of Web Services and
standards.

Section 3 Web Services Architectures

This section discusses various distributed application architectures to which Web
Services can be applied; how Web Services are used in the implementation of
these architectures; and some specific Web Service architecture specifications be-
ing adopted.

Section 4 Web Services and Messaging

This section describes the specific transfer protocols, message formats, and cha l-
lenges being addressed—such as performance—related to the transfer of XML
messages to support Web Services.

Section 5 Web Services and Security

This section discusses a number of topic areas related to the application of secu-
rity to Web Services in order to attempt to ensure safe and secure communication
between interacting parties. These topics include:

• Authentication
• Identity Management
• Integrity
• Confidentiality
• Authorization
• Non-repudiation
• Trust
• Policy

Section 6 Interoperability of Web Services

This section covers one of the major issues in implementing a distributed commu-
nication protocol using open standards, with technology and software from multi-
ple vendors: ensuring interoperability. One of the most important reasons for the
popularity of Web Services is that it encourages automation-based communica-
tion between disparate organizations, each of which may have different IT strate-
gies, products, vendor relationships, and technical expertise. Web Services are
meant to remove most of the barriers to electronic business relationships, but this
can only succeed if the protocols used for communication are so well defined that
they can guarantee interpretation on each end of the connection.

Section 7 Web Services Choreography, Workflow, Mediation, and Routing

Analysis of Web Services Standards

3

This section discusses the process of defining and organizing complex transac-
tions involving multiple entities (including but not limited to Web Services).
Web Service standards are naturally being augmented by standards for modeling
and controlling business processes. This section describes some of the emerging
specifications and proposed standards.

Section 8 Discovery of Web Services

This section describes the applications of registries to support automated and
semi-automated discovery of and connection to Web Services over a network.

Section 9 The Semantic Web

This section discusses semantic technology being applied to Web Services to sup-
port discovery, automated connection, and even automated reasoning about the
operations and message content in Web Services. Some of these capabilities are
not likely to see practical use in the near term, but others have well-understood,
useful applications to meet important needs of Web Service architectures.

Section 10 Web Services Monitoring and Management

This section discusses the need for monitoring and management of Web Services,
and some emerging and proposed specifications to support this as-yet-
unaddressed need.

Section 11 Applications of Web Services

This section discusses some common applications of Web Services, and some
specifications on the periphery of Web Services standards, that are relevant to
DoD C2 net-centric software development.

Section 12 Preliminary Conclusions and Recommendations

This section is called “preliminary” because it summarizes the initial conclusions
and recommendations drawn from this Web Services analysis phase of the Web
Services Standards Analysis task. As the remaining tasks and resulting docu-
ments are produced, a final set of conclusions and recommendations will be writ-
ten taking into account the C2 user requirements and the emerging Web Services
development environment.

Analysis of Web Services Standards

4

2 Web Services

The notion of a ‘Web Service’ has proven to be difficult to define. The W3C Web Ser-
vices Architecture group has debated various candidate definitions vigorously, for many
months, without reaching a consensus. (Rather than consensus, their current definition
appears to reflect a lack of willingness to continue the debate, coming from all sides,
which seems to be holding. See: http://lists.w3.org/Archives/Public/www-ws-
arch/2003Aug/0047.html)

The major candidates definitions involved in the definition debate are (1) a Web Service
is anything that passes XML messages over HTTP, or (2) anything that could be defined
with WSDL, or (3) anything that is described by WSDL and uses SOAP. Some of the
major issues involved in the debate have been (a) whether support for the higher- level
infrastructure services defined by the Web Services architecture (security, reliability, etc)
was provided by the terms of the definition, (b) whether CORBA, DCOM, and their ilk
should be excluded by the definition, and (c) whether web servers and browsers should
be excluded by the definition. Opinions about the importance of issues such as (a), (b),
and (c) seemed to influence preferences for definition (1), (2) or (3).

2.1 Web Services defined

The W3C architecture group says the following:

There are many things that might be called "Web Services" in the world at large.
However, for the purpose of this Working Group and this architecture, and without
prejudice toward other definitions, we will use the following definition:

Definition: A Web Service is a software system designed to support interoperable ma-
chine-to-machine interaction over a network. It has an interface described in a ma-
chine-processable format (specifically WSDL). Other systems interact with the Web
Service in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other Web-
related standards.

One useful way to read this definition is a profile of the kind of Web Services that the
architecture group is interested in. And under this reading it becomes possible to consider
other characteristics of Web Services, besides WSDL and SOAP that do not logically fol-
low from the fact of being defined in WSDL, or from the fact of using SOAP. Such fur-
ther characteristics are discussed in the next section.

2.2 Characteristics of Web Services

Almost every discussion of Web Services lists a number of characteristics that Web Ser-
vices have, or could have, or perhaps should have. A quick survey of these discussions
based on a Google search shows very little overlap in the sets of characteristics that have
been suggested. Frequently the suggested characteristics are qualified as being "defining"
or as being "essential" characteristics; this is problematic, given the evident lack of over-
lap. Further, there is normally very little indication of whether the suggested characteris-
tics are characteristics of existing Web Services, of Web Services as they are or would be
defined in some version of Web Services architecture, or of something else.

Analysis of Web Services Standards

5

The most commonly cited characteristic of Web Services is that they are loosely coupled.
But some careful thought about this characteristic has shown that it is actually a combina-
tion of other properties, any of which may be present to a greater or lesser degree. (See:
http://lists.w3.org/Archives/Public/www-ws-arch/2003Sep/0086.html and comments.) If
this is the case, then does loosely coupled still count as a characteristic?

In order to better understand the nature and importance of the characteristics of Web Ser-
vices, this report adopts the following framework for discussion. First, the characteristics
of an ideal middleware are laid out, and then Web Services are compared to this ideal
middleware, in order to see which of the characteristics they inherit.

2.2.1 The Ideal Middleware

The notion of an ideal middleware comes from the work of B. Benatallah and his col-
leagues at the University of New South Wales. (See, for example:
http://www.sistm.unsw.edu.au/people/rabhi/publications/booksection.pdf).

The central concept in this discussion is integration, which provides interoperability to
heterogeneous systems and applications (the integration "partners").

Integration occurs at different layers, and the ideal middleware provides seamless integra-
tion at all of them. The integration layers are:

• The Communications Layer: This is the level at which information in exchanged
between the partners. Information exchange can be in the form of messages, or re-
mote procedure calls to distributed objects. For this layer the ideal middleware
would completely hide the protocol and/or distributed object framework details
from the partners.

• The Content Layer: This is the layer at which concepts and their properties get
mapped into data formats, and then get read back out again. For this layer the ideal
middleware would provide complete semantic and syntactic interoperability, by
hiding the transformations of data formats and the translations of concepts from the
partners.

• The Business Process Layer: This is the layer at which joint business processes
are carried out. Workflow to workflow interactions would be an example. For this
layer the ideal middleware would provide transparent peer-to-peer business carried
out with arbitrary partners.

The characteristics of an ideal middleware are then these: protocol hiding, distributed ob-
ject framework hiding, data format hiding, hiding the translation of concepts into data
formats and back out again, and hiding the details of inter-enterprise business process in-
tegration. Each of these characteristics occurs at a certain level.

2.2.2 Web Services as Ideal Middleware

By almost any definition, Web Services exchange XML over HTTP. Just this much gives
Web Services some of the characteristics of ideal middleware, in the communications
layer.

Analysis of Web Services Standards

6

Because XML is text based, it hides low-level details of data encoding, such a big-endian
vs. little-endian, character set encoding, and number representation. The use of standard
XML Schema data types allows Web Services to go even further in this direction. XML
also provides extensibility to data formats, in the sense that formats can be changed by
the addition of new fields and attributes, without affecting (or "breaking") clients that are
expecting to see the old format.

HTTP (plus DNS) hides the details of the physical location of services, allowing sym-
bolic references with URLs. And the HTTP protocol itself hides lower level protocol de-
tails, such as making and tearing down connections, reliable transport, and (with SSL)
secure channels between HTTP nodes.

When Web Services use SOAP they acquire additional characteristics of ideal middle-
ware. SOAP provides a standard form of distributed error handling, and thus hides the
details of an important, though often ignored, area. SOAP with attachments provides a
standard way of assembling messages that have parts, and thus provides one sort of inter-
operability at the content level. And SOAP headers provide the hooks for reliable mes-
saging and data security. Insofar as these can be automated and hidden from the business
process layer, they become characteristics of ideal middleware.

Interoperability at the content layer is perhaps the least-addressed part of ideal middle-
ware, from the Web Services point of view. Shared XML Schemas partially addresses the
goal of hiding the details of data format conversions, but the process of developing such
schemas requires all partners to look closely at details, and at how those details do or
don't fit into the shared schema. Shared ontologies partially address the goal of hiding the
translating of concepts into and out of (shared) data formats.

Interoperability at the business process layer is certainly being addressed by Web Ser-
vices standardization efforts, which are building on XML standardization efforts such as
ebXML or RossettaNet, which are themselves building on earlier EDI efforts. But this
level of interoperability is not characteristic of existing Web Services. Rather, the clear
goal is for it to be a characteristic of Web Services as they will exist in the future.

2.3 Foundations of Web Services

2.3.1 Extensible Markup Language (XML)

The Extensible Markup Language (XML) is a subset of SGML that can be served, re-
ceived, and processed on the Web in the way that HTML can.

2.3.1.1 Specification and Status

Extensible Markup Language (XML) 1.0 (Second Edition) W3C Recommendation 6 Oc-
tober 2000

XML 1.0 Second Edition Specification Errata (as of 2003-09-10)

Analysis of Web Services Standards

7

2.3.1.2 Main Concepts

Documents vs. Data

XML was designed to enable electronic publishing on the Internet. Within the publishing
industry, the tradition from the beginning has been for editors to insert so-called
"markup" symbols into a text, in order to tell typesetters how to set up a page of type.
One of the real advances of XML was to define a way of inserting markup that allowed
marked-up text to be parsed unambiguously.

Once XML was under development, it quickly became evident to a number of people that
XML had another use. Rather than inserting the markup into the content, as publishers
do, one could instead insert content into the markup. XML markup allowed unambiguous
parse trees to be defined, and these trees could be used to "hold" the content. People
working on formal product descriptions, such as are found in manufacturers' catalogs,
were among the first to see the potential for this structured content use of XML.

For Web Services purposes it is the structured content use of XML that is important. Web
Services need to ingest and react to messages without human intervention, and for that to
happen those messages need to have unambiguous structure. Further, the useful function
of many Web Services is to respond to queries for data, and the structured content use of
XML has turned out to be a good way to provide that function.

XML Styles

Given that XML is to be used to provide unambiguous structure, there are three predomi-
nant styles for how that structuring is done. These can be used independently or in com-
bination. There is an interaction between the style of an XML document and the sche-
matic description of the XML used.

The first style of structuring attempts to copy some inherent structure of the data that is to
be represented into the structure that is provided by the XML tagging. This style tends to
work best with things that are designed to be structured; a typical example is a biblio-
graphic record. A bibliographic record has a designed- in structure where a book has a
title and an author, and author has a first name and a last name, and so on. Structures like
these can often be imitated exactly by XML.

The second style of structuring uses some linking mechanism that is provided by XML or
by an ancillary technology such as XLink. In this case, the inherent structure of the data
being represented is modeled by relationships that are created with links between ele-
ments that are, from the point of view of the first style, independent. Many good exam-
ples of this style can be found by looking at XML encoded RDF documents.

The third style resembles the second, except that some ad-hoc mechanism is used to cre-
ate the links that establish the relationships betweens the parts of the structure. WSDL
documents are a good example of this style. In WSDL documents links are created using
the principle of identical names within a namespace. There is nothing in the structure of
XML itself that says that this principle should hold. It is just a convention that is estab-
lished outside of XML, by the WSDL specification itself.

Analysis of Web Services Standards

8

2.3.1.3 Implementations

A large and growing number of implementations are available, without cost.

2.3.1.4 Recommendation

Level 1: Ready for use.

Despite its short history, XML already permeates the web, both in terms of domains and
in terms of geography. (Source: The XML Web,
http://www2003.org/cdrom/papers/refereed/p677/p677-mignet.html)

2.3.2 XML Schema

From the beginning XML had a DTD language that allowed the description of the general
form of a type of structure. Here "general form of a type" means that a structure could
have variants and could still be described. This ability to describe general forms is useful
in its own right; the DTD language can be used not only to describe actual data, but also
to specify how potential data sets are required to be structured. However, the DTD lan-
guage is not well suited for describing messages and data, because it lacks namespaces
and actual data types

XML Schema is a more powerful language for describing XML structure; it provides a
large set of data types that are now in use in a number of the ancillary W3C XML tech-
nologies. It provides the ability to define structures and parts of structures within name-
spaces. In addition, it provides the capability for doing modularized, object-oriented de-
velopment of schemas for XML. And of course it provides validation.

2.3.2.1 Specification and Status

XML Schema Part 1: Structures (W3C Recommendation 2 May 2001)

http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Data types (W3C Recommendation 02 May 2001).

http://www.w3.org/TR/xmlschema-2/

2.3.2.2 Main Concepts

Validation

Validation is the process of checking the conformance of a document to a schema. In the
case of XML Schema, checking the conformance of an XML document involves check-
ing structural matches, and checking data types. If the XML structure of a document is
such that it mirrors the structure of the underlying model of the document, then validation
can be used to check the conformance of a document with its intended model.

Modular and Object-Oriented

XML Schema is designed to support modular object-oriented schema development. Sup-
port for modular development is provided by namespaces and import and/or include ca-
pabilities. Support for object-oriented development includes control over visibility with

Analysis of Web Services Standards

9

global vs. local class and element declarations, object class inheritance via the use of sub-
stitution groups, and extension and/or restrictions of classes.

XML Schema and Web Services

By itself, XML, and the structure that it provides, do not enable the interoperability of
Web Services. At least one more level of cooperation between services is required, in or-
der for them to make use of the structured XML messages and data that they exchange.
Somehow a shared understanding of the structure of the XML has to be present at both
ends of the message channel. XML Schema provides one way of doing this, insofar as it
provides a language for specifying what the messages and data have to look like in gen-
eral.

The intricate process of developing schemas for data model components, and building
useful application schemas out of these components (which is so specialized that it even
has a name), is critical for interoperability.

2.3.2.3 Implementations

• XML Spy
• Xerces
• XSV

2.3.2.4 Recommendation

Level 2: Widely accepted but difficult to use correctly

The need for the development of best practices for using XML Schema (a need which is
currently being fulfilled) is a good indication of the difficulty of developing realistic
XML Schema.

2.3.3 Simple Object Access Protocol (SOAP)

SOAP is a lightweight protocol for exchange of information in a decentralized, distrib-
uted environment. It is an XML based protocol that defines the following four things:

1. A SOAP message construct that defines the structure of a SOAP message in terms
of XML infosets for SOAP envelopes, headers, bodies, and faults.

2. A SOAP processing model that defines the rules for processing a SOAP message

3. A protocol binding framework, that defines the rules for defining a binding to an
underlying protocol that can be used for exchanging SOAP messages between
SOAP nodes. Special attention is given to the HTTP protocol binding.

4. An extensibility model that defines the concepts of SOAP features and SOAP
modules.

2.3.3.1 Specification and Status

SOAP Version 1.2 Part 1: Messaging Framework (W3C Recommendation 24 June 2003)

SOAP Version 1.2 Part 2: Adjuncts (W3C Recommendation 24 June 2003)

Analysis of Web Services Standards

10

2.3.3.2 Main Concepts

Messages

SOAP is fundamentally a stateless, one-way message exchange paradigm. Hence the no-
tion of message is central. Figure 2.1 lays out the conceptual landscape of the SOAP mes-
sage, with the message at the center.

Figure 2.1 The SOAP Message Model

Source: http://lists.w3.org/Archives/Public/
www-ws-arch/2003Oct/0015.html

SOAP and Web Services

For the W3C Web Services architecture, SOAP is part of the defining characteristics of a
Web Service. This is because it is SOAP that provides the structure that is needed for
higher- level requirements, such a reliable messaging and security, to be realized.

2.3.3.3 Implementations

Major vendors and open source groups are committed to SOAP. Initial support for SOAP
1.2 is available in the following implementations:

• Axis

Analysis of Web Services Standards

11

• .NET

2.3.3.4 Recommendation

Level 2: Ready for early adopters.

SOAP 1.1 has been very widely implemented and is part of the WS-I Basic Profile Ver-
sion 1.0. SOAP 1.2 went to Recommendation status in June, 2003. It does not seem likely
that SOAP 1.2 will be particularly controversial and major vendors will probably imple-
ment it quickly now that it is a recommendation.

2.3.4 Web Services Description Language (WSDL)

Web Services Description Language (WSDL) provides a model and an XML format for
describing Web Services at the operation level. WSDL is way to describe a contract be-
tween a consumer and a service about the exchange of messages between them. XML
Schema (or a related schema language) is used to describe the structure of those mes-
sages.

2.3.4.1 Specification and Status

Web Services Description Language (WSDL) 1.1 (W3C Note 15 March 2001)

Web Services Description Language (WSDL) Version 1.2 Part 1: Core Language (W3C
Working Draft 11 June 2003)

Web Services Description Language (WSDL) Version 1.2 Part 2: Message Patterns
(W3C Working Draft 11 June 2003)

Web Services Description Language (WSDL) Version 1.2 Part 3: Bindings (W3C
Working Draft 11 June 2003)

2.3.4.2 Main Concepts

Abstract Interface Definitions

WSDL distinguishes the abstract description of a service from the concrete details of how
to access an actual implementation of a service. The top outlined area in Figure 2.2 shows
the WSDL components that contribute to the abstract definition, and the bottom outlined
area shows the concrete implementation components. The purpose of this distinction is to
be able to define both service types and service instances, and to be able to relate them.
(Note that in WSDL version 1.2 ‘portType’ has become ‘interface’ and ‘port’ has become
‘endpoint’.)

Analysis of Web Services Standards

12

binding

-name : String

operation

-name : String

port

-name : String

portType

-name : String

service

-name : String

message

-name : String

type

0..*0..*

0..*

0..*

0..*

1..*

0..*

output

fault

input part

Figure 2.2 The Main Components of a WSDL Description

Message Exchange Patterns

Message exchange patterns are a central feature of WSDL. A message exchange pattern
is composed of a set of messages, together with their senders and receive rs that make up
a single use of a Web Service. The term 'operation', which is used in Figure 2.2, might
implicitly suggest that an operation describes something more than a message exchange.
In WSDL, that is not the case. That a particular operation gets mapped, in some applica-
tion, to, say, a method invocation is not suggested or implied by the existence of a WSDL
operation component. Rather, what is intended by the term ‘operation’ is a particular
level of interaction – the level that focuses on a particular service node – in a stack of in-
creasingly more complex interactions among Web Services. Extremely simple applica-
tions based on single message exchanges may be adequately characterized at the opera-
tion level.

Bindings

WSDL defines bindings for SOAP, and for HTTP GET and POST methods. Addition-
ally, it provides an extensibility mechanism for defining additional technology specific
bindings. This allows for changes in the area of network and message protocols, without
requiring coordinated changes in the WSDL specification.

2.3.4.3 Implementations

A number of implementations of tools for developing WSDL 1.1, and applications that
use WSDL 1.1 are in existence. Currently the tools do not interoperate, but there is active
work that is focused on making that happen. Many of these tools operate on the assump-
tion that WSDL is an interface definition language, something that the authors of version
1.2 are trying to discourage.

• WSDL4J
• .NET
• WSDL2Java

Analysis of Web Services Standards

13

• CapeClear

2.3.4.4 Recommendation

Level 2: Ready for early adopters

Although WSDL 1.1 has never been on track to become an official specification, it has
been very widely implemented and is part of the WS-I Basic Profile Version 1.0. WSDL
1.2 is being developed in the W3C and is in a "middle" stage of the standardization proc-
ess. There does not seem to be any particular competition to WSDL 1.2 in other standards
organizations and major vendors will probably implement it quickly once it becomes a
recommendation (which will take a while).

Analysis of Web Services Standards

14

3 Web Services Architectures

This section describes architectural considerations for Web Services. Various “architec-
ture types” are described (service-oriented, peer-to-peer), as well as specific architec-
tures/frameworks that are especially noteworthy. This section begins with a discussion of
message exchange patterns (MEPs), as they play a vital role in Web Services architec-
tures as well as many of the specifications that we will reference in this document. We
offer recommendations only on the specific architectures/frameworks; the remainder is
meant as supporting information.

3.1 Message Exchange Patterns

In considering the interactions between a client (requestor) and a Web Service (provider),
there are various possible message exchange patterns (MEPs) that define these interac-
tions. The W3C Web Services Definition Language (WSDL) Version 1.1 defines the fo l-
lowing four message exchange patterns:

• One-way
• Request-response
• Solicit-response
• Notification

The One-way and Request-response patterns are the most widely used in current practice.
Each of these patterns is described below.

3.1.1 One-Way

In this message exchange pattern, the Web Service receives a message from the client:

 Client
 (Requestor)

 Web
 Service

(Provider)

Figure 3.1 One-Way Message Exchange Pattern

An example would be the submission of a purchase order to a Web Service.

3.1.2 Request/Response

In this message exchange pattern, the Web Service receives a message from the client
and sends back a correlated message:

Analysis of Web Services Standards

15

 Client
 (Requestor)

 Web
 Service

(Provider)

Figure 3.2 Request/Response Message Exchange Pattern

An example would be the submission of a purchase order to a Web Service followed by
an acknowledgement from the Web Service to the client.

3.1.3 Solicit Response

In this message exchange pattern, the Web Service sends a message to the client and re-
ceives a correlated message:

 Client
 (Requestor)

 Web
 Service

(Provider)

Figure 3.3 Solicit Response Message Exchange Pattern

An example would be the sending of an invoice to a client by Web Service in response to
the receipt of a purchase order by the Web Service, in which the Web Service did not re-
ceive an acknowledgement of receipt of the invoice by the client within a predetermined
period of time. The Web Service would then send a “request for acknowledgement”.

3.1.4 Notification

In this message exchange pattern, the Web Service sends a message to the client:

 Client
 (Requestor)

 Web
 Service

(Provider)

Figure 3.4 Notification Message Exchange Pattern

An example would be the sending of an invoice to a client by Web Service in response to
the receipt of a purchase order by the Web Service.

In addition to the message exchange patterns described above, the notion of synchroniza-
tion is also important. In terms of synchronization, there are two types of message ex-
changes:

• Synchronous
• Asynchronous

Analysis of Web Services Standards

16

In a synchronous message exchange, the client waits for a response from a Web Service
after sending a request, and receives a response from the Web Service on the same com-
munication channel on which the request was sent. The process of waiting for a response
is known as “blocking”. Conversely, in an asynchronous message exchange, the client
does not wait for a response from a Web Service after sending a request; rather, the client
is free to perform other tasks and receives a response a response from the Web Service at
a later point on a different communication channel on which the request was sent. The
response message is “correlated” to the corresponding request message through one or
more pieces of information in the response (such as a request ID, purchase order number,
etc.). Asynchronous message exchanges often utilize message queuing mechanisms such
as Java Message Service (JMS) or IBM WebSphere MQ.

Each of the two-message message exchange patterns discussed above (request-response
and solicit-response) may be implemented in either a synchronous or asynchronous man-
ner.

3.2 Architecture Types

This section presents various “architecture types” that can be considered for use with
Web Services. Of all the architecture types described here, the service-oriented architec-
ture (SOA) is most prominently used with Web Services today.

3.2.1 Service Oriented Architecture (SOA)

A service-oriented architecture (SOA) is similar in concept to a distributed system, but it
is focused on the concept of services. A distributed system is a system that is comprised
of various “components” that do not share a common address space (i.e. common mem-
ory) and do not operate in the same processing environment. Distributed systems have
existed for many years, and technologies such as Microsoft’s Distributed Component Ob-
ject Model (DCOM) and the Object Management Group’s (OMG’s) Common Object
Request Broker Architecture (CORBA) have been used to facilitate communication be-
tween distributed program objects in a distributed system.

A service-oriented architecture is essentially a collection of services that communicate
with each other. The communication can involve either simple data passing or it could
involve two or more services coordinating some activity. The following concepts are es-
sential to service-oriented architectures:

• Services: Referred to as “Web Services” in current SOA architectures
• Dynamic discovery: Services can be dynamically discovered through mecha-

nisms such as service registries
• Messages: Service providers and consumers communicate via messages

The “Publish/Find/Bind” Triangle

In an SOA, services are published in a service registry where consumers (requestors) find
them. Once found, a consumer binds to (uses) a service. This is known as the “pub-
lish/find/bind” triangle, and is illustrated in the figure below:

Analysis of Web Services Standards

17

Service

Consumer

Service

Registry

Service

Provider

Publish Find

Bind

Figure 3.5 Publish/Find/Bind Triangle

3.2.2 Peer-To-Peer (P2P)

In a peer-to-peer (P2P) architecture, all nodes are treated as equals (peers) in a decentral-
ized fashion. There is no need for a central server (such as the Service Registry in the
SOA figure above), as any node can provide this functiona lity. Therefore, each node
would be considered both a requestor and a provider.

There are some disadvantages to peer-to-peer architectures that render them less attrac-
tive than service-oriented architectures:

• Bandwidth: Because P2P architectures eliminate central servers, all peers in a
network are searched – this uses a large amount of bandwidth.

• Security: Increased security risks due use of decentralized services.

• Maintenance: Due to its complex architecture, maintenance of a P2P network
can be difficult.

3.2.3 Enterprise Bus

Enterprise Service Bus (ESB) is an emerging architecture that is backed by software ven-
dors such as Sonic Software, Cape Clear, and Tibco. IBM recently announced plans for
releasing an ESB product. As with P2P architectures, all applications and services in an
ESB are viewed equally as service endpoints. An ESB is a type of SOA in which com-
munications between endpoints are asynchronous.

The following figure illustrates the concept of an ESB:

Analysis of Web Services Standards

18

Figure 3.6 Enterprise Service Bus

Source: WebServices.org

In the above figure, applications and services simply “plug into” the ESB, post their data
to the ESB, and receive data from it. The ESB takes care of the necessary coordination
between interactions.

3.2.4 Grid Computing

Grid computing involves applying the resources of many computers in a network to a
single problem at the same time, thereby making more cost-effective use of a given
amount of computer resources. This is usually applied to a scientific or technical problem
that requires a great number of computer processing cycles or access to large amounts of
data. An initiative known as the Open Grid Services Architecture (OGSA) represents an
evolution towards a grid system architecture based on Web Services concepts and tech-
nologies. OGSA is built on a base infrastructure known as Open Grid Services Infrastruc-
ture (OGSI). OGSI’s "Grid Service Specification" defines the standard interfaces and be-
haviors of a Grid service, building on a Web Services base.

The Globus Alliance is a research and development project focused on enabling the ap-
plication of grid concepts to scientific and engineering computing. Its major corporate
partners currently include IBM and Microsoft. Hewlett-Packard Company has announced
plans to further enable its enterprise infrastructure technologies for grid computing by
incorporating support for the Open Grid Services Architecture (OGSA) and Globus
Toolkit (an open-source software toolkit for building grids) into its product lines.

3.3 Specific Architectures

This section presents various specific emerging Web Services architectures and frame-
works. Although ebXML is not considered to be a Web Services architecture or frame-
work, it is included because of its various Web Services aspects.

Analysis of Web Services Standards

19

3.3.1 W3C Web Services Architecture (WSA)

The W3C Web Services Architecture (WSA) Working Group was initiated in January
2002 as part of the W3C Web Services Activity. The goal of the W3C Web Services Ac-
tivity is to develop a set of technologies in order to lead Web Services to their full poten-
tial. The expected duration of the W3C Web Services Architecture Working Group is 2
years, through January 2004. The W3C Web Services Architecture is a W3C Working
Draft, dated August 2003.

The W3C Web Services Architecture integrates different conceptions of Web Services
under a common "reference architecture". In doing so, it provides a model and a context
for understanding Web Services, and the relationships between the various specifications
and technologies that comprise the Web Services Architecture. Additionally, the W3C
Web Services Architecture describes both the minimal characteristics that are common to
all Web Services, and a number of characteristics that are needed by many, but not all,
Web Services.

3.3.1.1 Specification and Status

This section discusses the W3C Web Services Architecture Working Draft, August 2003.

3.3.1.2 Main Concepts

Web Services “Stack”

The W3C Web Services Architecture defines the following “stack diagram” for Web
Services:

Analysis of Web Services Standards

20

Figure 3.7 W3C Web Services Architecture

Source: W3C

This diagram ranges from various communications/transfer protocols at the bottom
(HTTP, SMTP, etc.), moving upward through the SOAP messaging layer, Web Services
descriptions, and arriving at the “Processes” layer which encompasses areas such as Web
Services discovery and Web Services choreography. The stack also conveys the high
importance of security and management through their vertical placement spanning all
other layers.

Architecture Models

The W3C Web Services Architecture consists of five “architecture models”:

• Message-Oriented Model (MOM)
• Service-Oriented Model (SOM)
• Resource-Oriented Model (ROM)
• Policy Model
• Management Model

Each model provides a different “lens” through which to view Web Services. Each is de-
scribed in further detail below:

• The Message-Oriented Model (MOM) focuses on those aspects of the
architecture that relate to messages and their processing. It addresses how Web
Service agents (requesters and providers) may interact with each other using a

Analysis of Web Services Standards

21

message oriented-communication model in which XML-formatted messages are
exchanged.

• The Service-Oriented Model (SOM) builds on the MOM by adding the concept
of services and actions that are performed by service requesters and service
providers. The SOM essentially allows us to interpret messages as requests for
actions and as responses to those requests.

• The Resource-Oriented Model (ROM) focuses on those aspects of the
architecture that relate to resources (i.e. anything that has an identifier), and the
service model associated with manipulating resources. It builds on the SOM
through its development of the service model associated with resources, and
common actions associated with manipulating resources.

• The Policy Model focuses on the core concepts needed to relate policies to Web
Services. Policies may be enacted to represent security concerns, quality of
service concerns, management concerns and even application concerns.

• The Management Model focuses on the management of Web Services, including
use of the infrastructure offered by Web Services to manage the resources needed
to deliver that infrastructure. The Management model uses many of the other
features and concepts of the architecture, such as the concepts of resource,
description, service, etc. It also addresses the life cycle of Web Services.

The REST Architectural Style

REST (“Representational State Transfer”) is an architectural style for Web applications
that is referenced with the W3C Web Services Architecture. Proposed by Dr. Roy Field-
ing, it is a technique in which agents manipulate only by the exchange of “representa-
tions”, thereby using "hypermedia as the engine of application state." A simpler alterna-
tive to SOAP-based Web Services, REST defines identifiable resources, and methods for
accessing and manipulating the state of those resources. As implemented on the World
Wide Web, URIs identify the resources, and HTTP is the protocol by which resources are
accessed. Unlike RPC-based techniques such as SOAP that use their own syntax for de-
scribing the location of information, REST uses HTTP and its PUT, GET, POST and
DELETE operators for the exchange of data.

REST is favored by some for Web Services because of its simplicity; however, its limited
set of operators and its “low-level” interface lead others to prefer a SOAP-based ap-
proach.

3.3.1.3 Assessment

Table 3.1 Assessment of W3C Web Services Architecture

Category Information Rating
Specification phase W3C Working Draft LOW

Open standard YES HIGH
Potential to become open stan-

dard
 N/A

Analysis of Web Services Standards

22

Category Information Rating
Rate of advancement Publication date: August 2003 HIGH

Potential impact on Web Ser-
vices

 HIGH

Maturity level of consortium 9 years HIGH
Number of implementations N/A

3.3.1.4 Recommendation

Level 2: Emerging

The main justification for this recommendation level is the immaturity of the specifica-
tion. However, we believe that the work that is being done by the W3C Web Services Ar-
chitecture Working Group is highly important and bears close watching. We anticipate
that the direction that this Working Group is imparting will have a major impact on both
the architectural direction of the World Wide Web, and the Web product landscape.

3.3.2 Global XML Web Services Architecture (GXA)

The Global XML Web Services Architecture (GXA) is an application- level protocol
framework built on the foundation of XML and SOAP that helps satisfy the need for con-
sistent support of more secure Web Services at the levels of inter-enterprise trust and
business policy agreement. The GXA specifications are authored primarily by Microsoft,
IBM, and Verisign, with additional authorship by organizations such as BEA Systems,
RSA Security, TIBCO and SAP. GXA grew out of an April 2001 Web Services Work-
shop conducted by W3C whose aim was to explore the direction the W3C should take to
standardize the emerging Web Services architecture.

In addition to security, GXA also covers important aspects of Web Services such as
transactions, reliable messaging, and Web Services addressing. In doing so, the GXA
specifications build on each other to provide the necessary functionality for a given con-
centration area – and they can be adopted piecemeal or en masse. The GXA specifica-
tions also leverage existing specifications such as ITU-T X.509, W3C XML Signature,
and W3C XML Encryption for providing required functionality. Because GXA builds on
XML and SOAP, it is “transport and transfer protocol neutral” – that is, it does not care
whether the transport/transfer mechanism used for sending/receiving of SOAP messages
is HTTP, SMTP, FTP, or another such mechanism.

3.3.2.1 Specification and Status

This will be listed in each section in which an individual GXA specification is described.

3.3.2.2 Main Concepts

Concentration Areas

Several of the GXA specifications will be discussed in various sections of this report. The
specifications can be organized into the following concentration areas:

Analysis of Web Services Standards

23

• Security: Defines a standard framework for implementing Web Services security,
as well as trust and federation mechanisms.

• Policy: Provides general-purpose mechanisms for expressing enterprise security
policies, as well as specific areas in which policies may be defined and how to as-
sociate policies with XML messages and WSDL elements.

• Message Routing: Describes mechanisms for dynamic routing of SOAP mes-
sages among SOAP nodes.

• Transaction/Coordination: Addresses multiparty Web Service interaction that
requires coordination and transactional capabilities to be expressed among par-
ticipating Web Services.

• Discovery/Metadata: Provides mechanisms for Web Services discovery and the
exchange of Web Services metadata between parties.

• Reliable Messaging: Defines mechanisms for ensuring the reliable delivery of
messages, and a framework for identifying Web Services endpoints.

The Specifications

The GXA specifications are as follows:

Table 3.2 GXA Specifications

Concentration
Area

Specification Brief Description

WS-Security Known as the “Cornerstone of GXA”; defines a standard set of
SOAP extensions that implement message-level integrity and conf i-
dentiality for secure message exchanges.

WS-Trust Defines an extensible model for setting up and verifying trust rela-
tionships, allowing Web Services to agree on which security servers
they “trust” and to rely on these servers.

WS-SecureConversation Leverages WS-Security and WS-Trust to provide a “context authen-
tication model” for communications sessions.

Security

WS-Federation Leverages WS-Trust and WS-SecureConversation to enable a set of
organizations to establish a single, federated security domain.

WS-Policy Provides a general-purpose specification for expressing enterprise
security policies.

WS-PolicyAssertions Provides policies for aspects such as character encoding, natural
(spoken) language, and specification versions.

WS-SecurityPolicy Builds on WS-Security by defining how to describe policies related
to various features defined in the WS-Security specification for such
aspects as security tokens, message integrity, and message age.

Policy

WS-PolicyAttachment Specifies how to associate a policy set with XML messages and
WSDL elements (operations and portTypes).

Message Routing WS-Routing Describes mechanisms for routing SOAP messages without the need
to rely on underlying transport mechanisms.

Analysis of Web Services Standards

24

Concentration
Area

Specification Brief Description

 WS-Referral Describes mechanisms by which the message paths specified in WS-
Routing can be dynamically discovered.

WS-Coordination Defines a general mechanism for starting and agreeing on the out-
come of multiparty, multi-message Web Service tasks.

WS-AtomicTransaction Defines a specific set of protocols that plug into the WS-
Coordination model to implement traditional two-phase atomic
transaction protocols.

Transaction / Coor-
dination

WS-BusinessActivity Defines a specific set of protocols that plug into the WS-
Coordination model to implement long-running, compensation-
based transaction protocols.

WS-Inspection Provides a language that enables flexible discovery of Web Services,
regardless of the mechanism used to describe them (WSDL, UDDI,
etc.).

Discovery / Meta-
data

WS-MetadataExchange Provides a set of Web Service mechanisms for exchanging policies,
WSDL documents, and potentially other metadata between two or
more parties.

WS-ReliableMessaging Defines mechanisms that enable Web Services to ensure delivery of
messages over unreliable communication networks.

Reliable Messaging

WS-Addressing Provides transport-neutral mechanisms for identifying Web Service
endpoints and securing end-to-end endpoint identification in mes-
sages.

3.3.2.3 Assessment

An assessment will be provided in each section in which an individual GXA specification
is described.

3.3.2.4 Recommendation

Recommendations for individual GXA specifications will be provided in each section in
which an individual GXA specification is described.

As a whole, we believe that GXA bears close watching because of the wide range of
functionality that it covers, and also because its specifications have already begun mov-
ing into open standards consortiums (WS-Security is developing under OASIS). We be-
lieve that the functionality covered by the GXA specifications provides much-needed ca-
pabilities that are vital to the advancement of Web Services in multiple areas. We are
somewhat concerned, however, about the slow pace at which the GXA specifications are
being advanced into open standards consortiums, and hope that this situation improves in
the near future. If the GXA specifications are not advanced at a quicker pace, they run the
risk of being “replaced” by other specifications in the functionality areas that they cover.

3.3.3 Electronic Business XML (ebXML)

ebXML was an 18-month initiative that ended in May 2001 that produced a modular suite
of specifications that enable enterprises of any size and in any geographical location to

Analysis of Web Services Standards

25

conduct business over the Internet. It was sponsored by the United Nations Centre for
Trade Facilitation and Electronic Business (UN/CEFACT) and OASIS. The ebXML
framework provides companies with a standard method to exchange business messages,
conduct trading relationships, communicate data in common terms and define and regis-
ter business processes.

3.3.3.1 Specification and Status

This will be listed in each section in which an individual ebXML specification is de-
scribed.

3.3.3.2 Main Concepts

ebXML “Stack”

The ebXML “stack” is comprised of five major components:

• Business Processes: The ebXML Business Process Schema Specification (BPSS)
provides a standard framework for business process specification, and defines a
mechanism for the choreography of business transactions into business collabora-
tions.

• Registry: ebXML Registry provides a mechanism by which XML artifacts can be
stored, maintained, and automatically discovered.

• Messaging: The ebXML Messaging Service (ebMS) specification specifies
SOAP extensions that provide security and reliability features necessary to sup-
port international electronic business.

• Collaboration Profiles and Agreements: The ebXML Collaboration Protocol
Profile and Agreement (CPP/A) specification provides a mechanism for defining
interactions between two parties engaging in a specified business collaboration.

• Core Components: The Core Components Technical Specification (CCTS) pro-
vides a way to identify, capture, and maximize the reuse of business information
to support and enhance interoperability across multiple business situations.

Conceptual Overview

The following figure demonstrates the conceptual overview of ebXML, and how the
above components interact:

Analysis of Web Services Standards

26

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details

1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement

4

Query about COMPANY A profile

Download
Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details

1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement

4

Query about COMPANY A profile

Download
Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details

1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agree on Business Arrangement

4

Query about COMPANY A profile

Download
Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

Figure 3.8 ebXML Conceptual Overview

Source: ebXML Technical Architecture v1.04

In summary, the above figure depicts a company (Company A) that submits its business
profile information (step 3) to an ebXML Registry. This information is contained in a
Collaboration Protocol Profile (CPP). Another company (Company B) discovers Com-
pany A’s information in the ebXML Registry (step 4), and wishes to do business with
Company B. Company B submits a proposed business arrangement (in the form of a Col-
laboration Protocol Agreement, or CPA) directly to Company A’s ebXML compliant
software (step 5). Company A accepts the business agreement, and Company A and B are
now ready to engage in eBusiness using ebXML (step 6).

Since May 2001, further development of the ebXML specifications has been divided be-
tween OASIS and UN/CEFACT. However, recent events have caused the UN/CEFACT
specifications to be moved back to OASIS where their development will continue.

ebXML and Web Services

The ebXML initiative began while Web Services was in its infancy; therefore not all as-
pects of ebXML are centered on Web Services. For example, the emerging OASIS Web
Services Business Process Execution Language (WS BPEL) is centered on the Web Ser-
vices hierarchy presented in WSDL (portType, operation, message, etc.) and networks of
interacting services, while the ebXML Business Process Schema Specification (BPSS) is
centered on the concept of business process patterns, workflows, and transactions be-
tween business collaboration partners. The ebXML Messaging Service (ebMS) specifica-
tion, whose foundation is SOAP, is currently being adapted to support WSDL interfacing
as well. Many of the ebXML specifications have incorporated Web Services since their

Analysis of Web Services Standards

27

original version – one example is the inclusion of a SOAP interface to ebXML Registry
in its 2.0 version.

In terms of adoption, we have observed that ebXML as a whole is currently most widely
adopted in Europe and Asia and much less in the U.S. where it is being used in the auto-
motive industry, healthcare, and the federal government. We believe that its low adoption
here in the U.S. is partly due to a perception that ebXML and Web Services are mutually
exclusive approaches.

3.3.3.3 Assessment

An assessment will be provided in each section in which an individual ebXML specifica-
tion is described.

3.3.3.4 Recommendation

Recommendations for individual ebXML specifications will be provided in each section
in which an individual ebXML specification is described.

As a whole, we are not certain at this time whether U.S. adoption of ebXML will increase
in the future. We believe that OASIS will need to drive an effort to clear up the current
confusion over the relationship between ebXML and Web Services. Since ebXML as a
whole is over 2 years old, at this point it may be difficult for it to advance further as a ho-
listic framework here in the U.S. We do not recommend that DISA adopt the ebXML
framework as a whole, but instead consider individual specifications.

3.3.4 General Recommendations

As adoption of Web Services has grown, the need to define more concrete architectures
has grown as well. There are multiple efforts to do so that bear close watching.

The following is a summary of the recommendations given in this section:

• We believe that the work that is being done by the W3C Web Services Architec-
ture Working Group is highly important and bears close watching

• The Global XML Web Services Architecture (GXA) specifications also bear close
watching because of the wide range of functionality that they cover, and because
GXA specifications have already begun moving into open standards consortiums

• We believe that the functionality covered by the GXA specifications provides
much-needed capabilities that are vital to the advancement of Web Services in
multiple areas, but are somewhat concerned about the slow pace at which the
GXA specifications are being advanced into open standards consortiums

• We do not recommend that DISA adopt the ebXML framework as a whole, but
instead consider individual specifications

3.4 References

W3C Web Services Definition Language (WSDL) Version 1.1:
http://www.w3.org/TR/wsdl

Analysis of Web Services Standards

28

Service-Oriented Architectures:
http://www.service-architecture.com/web-services/articles/service ori-
ented_architecture_soa_definition.html

W3C Web Services Architecture:
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

 “Web Services and Peer-to-Peer Computing: Companion Technologies”:
http://www.webservicesarchitect.com/content/articles/samtani05.asp

 “Asynchronous Web Services and the Enterprise Service Bus”:
http://www.webservices.org/index.php/article/articleview/352/1/1/

Globus Alliance:
http://www.globus.org/about/faq/general.html#globus

Joseph M. Chiusano, “Web Services Security and More: The Global XML Web Services
Architecture (GXA)”, Developer.com, March 2003
ebXML: www.ebxml.org

ebXML Technical Architecture Version 1.04:
http://www.ebxml.org/specs/ebTA.doc

Analysis of Web Services Standards

29

4 Web Services and Messaging

Web Services are defined by the messages that they send or receive. This allows for
loosely coupled distributed systems. There are several key aspects about messaging.
Messages must be transported from one machine to another across the network. The
messages need to support encoded attachments such as image or media files. Services
must be able to have reliable messaging capabilities. There is a desire to reduce the
bandwidth requirements by reducing the size of the messages. These aspects will be dis-
cussed in detail in this section.

4.1 Transfer Protocols

Web Services are built upon messages. The messages must be transported between ma-
chines to achieve the distributed nature of Web Services. This demands that a common
transfer protocol be defined. There are several well-defined Internet transfer protocols
that can be leveraged by Web Services

4.1.1 HTTP and Other Known Transfer Protocols

The Web Services Architecture indicates that services are invoked and provide results via
messages that are exchanged over some communication medium. It does not specify
which protocol should be used, or that only a single protocol will work. This is allows
for Web Services to leverage new protocols as they are created. The current Internet
standard for communication is the Hypertext Transfer Protocol (HTTP version 1.1, 1999,
ftp://ftp.isi.edu/in-notes/rfc2616.txt). HTTP is based on a stateless transaction consisting
of

• Connection -- The establishment of a connection by the client to the server
• Request -- The sending, by the client, of a request message to the server
• Response -- The sending, by the server, of a response to the client
• Close -- The closing of the connection by either both parties

This transaction is synchronous. The majority of Web Services are available via HTTP.

Other transfer protocols have been suggested for use by Web Services. This list includes
File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP) and Blocks Exten-
sible Exchange Protocol (BEEP.) FTP and SMTP are extensively used to perform the
tasks they were designed to do. There are issues with each protocol that makes them
poorly suited for Web Services. This does not technically prevent them from being used
for Web Services, but in reality, no one is using them for Web Services. BEEP is a new
specification that looks promising but is not gaining any ground on HTTP.

Although HTTP is the transfer protocol for Web Services, it does have its limitations.
These limitations have led to vendors developing proprietary or now standard protocols.
The main deficiencies of HTTP are its synchronous nature, its lack reliable messaging
and the fact that it is stateless.

Analysis of Web Services Standards

30

4.1.2 Message-Oriented Middleware (MOM)

Message-Oriented Middleware (MOM) (typically implemented as message queues) is a
mature technology that can enable message flow between systems within an enterprise.
MOM architectures are designed to work behind the firewall. They provide reliability,
scalability, performance, asynchronous capability and transaction support. There are
many vendors that provide MOM implementations such as Sonic’s SonicMQ, IBM’s
MQSeries or Microsoft’s MSMQ.

The downside to using a MOM’s is that all clients of the system must be leveraging the
same implementation because each one uses its own proprietary transfe r protocol. Since
the MOM architecture is designed to run within a single enterprise this typically is not an
issue. For Java developers the Java Message Service (JMS) provides a layer of abstrac-
tion making it easier to change MOM implementations. SOAP messages can be deliv-
ered with the added benefits that MOM provides. For enterprise wide solutions, MOM
can be the transfer mechanism.

There is a symbiotic relationship between HTTP-base Web Services and MOM. The
HTTP protocol exposes the services beyond the enterprise passing through the firewall.
The MOM provides backbone architecture allowing enterprise clients full access to the
MOM capabilities. The HTTP Web Service can be implemented as a client to the MOM
system, basically exposing the enterprise services as Web Services. This allows for a
greater variety of clients to access the services.

4.1.3 Recommendation

HTTP is the defined transfer protocol standard for Web Services because of the ubiquity
of HTTP implementations in today’s web servers. An HTTP Web Service can be used in
conjunction with a MOM implementation to provide the benefits of both to a wide range
of clients, both inside and outside the enterprise. The benefits of MOM to support reli-
able messaging cannot be understated, however, and standards to support interoperable
reliable messaging are likely to appear. Reliable messaging standards efforts are dis-
cussed later in this section.

4.2 Messaging and Attachments

A SOAP message may need to be transmitted with attachments of different kinds ranging
from engineering drawings to audio files. For example a meteorological Web Service
could provide current precipitation as an image along with the XML document containing
forecast information. The Amazon.com Web Service allows clients to retrieve thumbnail
images of books available for sale. There have been various ideas on how messages
should be associated with various formatted attachments.

4.2.1 Specification and Status

SOAP with Attachments (SwA) W3C Note, December 2000

http://www.w3.org/TR/SOAP-attachments

Analysis of Web Services Standards

31

4.2.2 Main Concepts

The two main specifications for handling message and attachments were SOAP with At-
tachments (SwA) and WS-Attachments. SwA is a W3C Note that defines how a SOAP
1.1 message can be carried inside a MIME multipart/related message while still allowing
the processing rules for the message to be preserved. It leverages the MIME multipart
mechanism to provide a means of attaching additional parts to the message. It does this
without having to modify or introduce additional specifications. The WS-Attachments
specification leverages Direct Internet Message Encapsulation (DIME), which is being
abandoned in favor of MIME multipart based messages. While there are still some ven-
dors supporting WS-Attachments and DIME the majority of implantations are using
SwA.

SwA works within the SOAP and MIME standards to define how SOAP messages can be
associated with one or more attachments that are transported in their native format. Most
Internet communication protocols already transport MIME encoded content. Attach-
ments are referenced using href attributes defined in SOAP 1.1. Resolution of URIs, in-
cluding href attributes, in SOAP messages are done using the well-defined rules for
multipart MIME messages.

While SwA is the defined standard for dealing with attachments there is a proposal that is
trying to improve upon it. The proposal is the Infoset Addendum to SOAP Messages
with Attachments. The proposal builds on SwA and is backwards compatible which is a
major advantage. It aligns the XML Infoset-based data model and the SOAP processing
model. A key concept is an additional XML Schema complexType that extends the
xs:base64Binary type with an xmime:mediaType attribute. This allows for MIME type to
be defined for the base64-encoded content. This allows for the attachments to be embed-
ded in the XML body rather than existing outside of the message with a URI reference to
them. The proposal still supports web references to external content but they are not re-
quired. This proposal is trying to address the desire to integrate pre-existing data formats
within a XML document.

4.2.3 Recommendation

Level 1: Ready for use.

SOAP with Attachments is the standard way of handling attachments with SOAP mes-
sages. There are a large number of implementations behind this open speciation includ-
ing SOAP with Attachments API for Java (SAAJ) and Systinet WASP Server for C++.

4.3 Reliable Messaging

Reliable messaging is not a new problem that was created by Web Services. Shipping
companies provide tracking numbers so that you can know that your package was deliv-
ered and signed for. Instead of shipping packages, Web Services sending millions of
messages in the span of a few minutes. It is critical to business and war fighters alike that
messages be reliably delivered to their destinations.

Analysis of Web Services Standards

32

4.3.1 Specification and Status

OASIS Message Service Specification Version (ebMS) 2.0, April 2002.
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf

OASIS Web Services Reliability Services (WS-Reliability) Working Draft 0.52, Septem-
ber 2003.
http://www.oasis-open.org/committees/download.php/3549/WS-Reliability-2003-09-
05b.pdf

Web Services Reliable Messaging Protocol (WS-ReliableMessaging), March 2003.
http://msdn.microsoft.com/ws/2003/03/ws-reliablemessaging

Web Services Acknowledgement (WS-Acknowledgement) 0.91, February 2003.
http://dev2dev.bea.com/technologies/webservices/WS-Acknowledgement_Intro.jsp

4.3.2 Main Concepts

At the simplest level, reliable messaging can be defined as the ability of a sender to de-
liver a message once and only once to a receiver. This definition can be expanded to sev-
eral requirements:

• Leverage SOAP to define the reliability mechanism
• Messages must not be lost if systems go offline
• Assert that messages can be received at least once, at most once, exactly once, etc
• Messages will be delivered in the order they are sent
• Sender and receiver will be notified when a message was not delivered
• Allow multiple hops between the sender and receiver
• Be independent from the transport protocol

Since SOAP is the standard for Web Services messaging, the reliability protocol should
be compatible with SOAP. SOAP’s extensibility mechanism should be leveraged. By
using do so, reliability will be encapsulated in the SOAP message and will ensure that it
is independent of the transport protocol. It is extremely likely that in the life time of a
Web Service that there will be a system failure or system maintenance which will cause
downtime. Message reliability dictates that the messages must not be lost. The message
should be resent a specified number of times or for a period time. If at the end the mes-
sage has not been received, the sender must receive an indication that the message was
not delivered. Messages that were being processed by the service that went down must
be persisted, so when it is back on line, it can continue processing. The ability to indicate
that messages can be received an exact number of times and arrive in the correct order
requires unique message identification and sequence identification. Web Services do not
define the transport protocol and even allow multiple protocols to be used to deliver a
single message. Hence the reliable messaging solution must be independent from the
transfer protocols.

There are current solutions that provide reliable messaging. Reliability can be imple-
mented at the service level, which places the burden on every service. The problem with
both situations is that the solution is not interoperable with other systems or services.
There are multiple specifications that are attempting to define the reliable messaging
standard. The list of specifications includes ebMS, WS-Reliability, WS-

Analysis of Web Services Standards

33

ReliableMessaging and WS-Acknowledgement. While the WS-Reliability is at the OA-
SIS Web Services Reliable Messaging TC, it is only a working draft. The differences
between the specifications are minor. There is no technical advantage to distinguish be-
tween the specifications.

4.3.3 Recommendation

Level 2: Emerging.

Reliable messaging is a known necessity for Web Services. At this time there is no stan-
dard for implementing reliable messaging. There are a number of venders who can cur-
rently provide systems that offer reliable messaging but there is no market leader and the
implementation will not be interoperable with other systems. This area should be closely
watched to see what standard emerges from the possible choices.

4.3.4 WS-Routing/WS-Referral (GXA)

The WS-Routing specification is part of the Global XML Web Services Architecture
(GXA). It was authored by Microsoft. They are discussed together here because of their
close dependencies. WS-Routing specifies mechanisms by which message routing details
can be specified in SOAP messages, while WS-Referral specifies mechanisms by which
the message paths specified in WS-Routing can be dynamically discovered.

4.3.4.1 Specification and Status

This section references the following specifications:

• WS-Routing Version 1.0 (October 2001)
• WS-Referral Version 1.0 (October 2001)

4.3.4.2 Main Concepts

SOAP Intermediaries/Routers

SOAP by itself does not define an actual message path along which a SOAP message is
to travel – rather, it relies on its underlying application layer protocols (such as HTTP or
SMTP) to do so. However, these protocols each have their own mechanisms for defining
message paths. As GXA is transport-neutral, it cannot rely on SOAP’s underlying appli-
cation layer protocols for specifying message paths. The WS-Routing specification lever-
ages the concept of a “SOAP intermediary” as defined in SOAP 1.2, therefore “raising
up” the capability to define a message path to the SOAP layer and making it transport-
neutral.

WS-Routing and WS-Referral define the concept of a SOAP router, which is a SOAP
node that exposes SOAP message relaying as a Web Service either as a standalone ser-
vice or in combination with other services. WS-Routing also defines a new SOAP header
named <path> that contains the following elements:

• from: Denotes the message originator
• to: Denotes the ultimate receiver
• fwd: Contains the forward message path
• rev: Contains the reverse message path, enabling 2-way message exchange

Analysis of Web Services Standards

34

The <wsrp:fwd> and <wsrp:rev> elements also contain <wsrp:via> elements to denote
intermediaries.

Example SOAP Header

The following example demonstrates a “path” SOAP header:

[01] <SOAP-ENV:Header>
[02] <wsrp:path>
[03] <wsrp:to>soap://D.com</wsrp:to>
[04] <wsrp:fwd>
[05] <wsrp:via>soap://B.com</wsrp:via>
[06] <wsrp:via>soap://C.com</wsrp:via>
[07] </wsrp:fwd>
[08] <wsrp:from>soap://A.com</wsrp:from>
[09] <wsrp:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</wsrp:id>
[10] </wsrp:path>
[11] </SOAP-ENV:Header>

In the above example, the message is to travel from soap://A.com [line 08] to
soap://D.com [line 03], passing through (“via”) intermediaries soap://B.com [line
05] and soap://C.com [line 06]. This may be done for purposes such as load balanc-
ing, if a Web Service’s network address has changed, or for dynamic message path opti-
mization (a “better” path suddenly exists).

Referral Statements

The basic unit of WS-Referral is a referral statement, which is an XML-based structure
for describing a routing entry along with a set of conditions under which the statement is
satisfied. A referral statement contains five parts – among them are:

• A set of SOAP actors for which a statement is intended

• A set of conditions that have to be met for a statement to be satisfied

• A set of SOAP routers that a statement is referring to as part of the delegation

Example Referral Statement

The following example illustrates a referral statement:

[01] <r:ref>
[02] <r:for>
[03] <r:prefix>soap://a.org</r:prefix>
[04] </r:for>
[05] <r:if>
[06] <r:ttl>43200000</r:ttl>
[07] </r:if>
[08] <r:go>
[09] <r:via>soap://b.org</r:via>
[10] </r:go>
[11] <r:refId>uuid:09233523-345b-4351-b623-5dsf35sgs5d6</r:refId>
[12] </r:ref>

In the above example, the <r:prefix> element [line 03] means that any SOAP node begin-
ning with the contained URI is considered to be a match for the referral. The <r:ttl> ele-
ment [line 06] denotes “time to live” – that is, it sets a “time to live” limit on the avail-
ability of a referral. The value of this element (43200000 [line 06]) is the number of mil-

Analysis of Web Services Standards

35

liseconds, which equates to 12 hours. Therefore, the entire statement would be read as
follows: “for all SOAP nodes that begin with the URI soap://a.org, if this referral is less
than 12 hours old, then go to soap://b.org [line 09]”.

4.3.4.3 Assessment

Table 4.1 Assessment of WS-Routing/WS-Referral

Category Information Rating
Specification phase Initial public draft release LOW

Open standard NO LOW
Potential to become open

standard
 MEDIUM

Rate of advancement • WS-Routing publication date:
October 2001

• WS-Referral publication date:
October 2001

LOW

Potential impact on Web Ser-
vices

 HIGH

Maturity level of consortium N/A
Number of implementations None LOW

4.3.4.4 Implementations

None.

4.3.4.5 Recommendation

Level 3: Questionable

Although we believe that WS-Routing and WS-Referral can have a high impact on Web
Services, they are not being developed within an open standards consortium. Addition-
ally, the rate of advancement of each of these specifications is low, and it is unclear at
this time whether Microsoft will advance them further.

4.3.5 Binary XML and XML Compression

XML is one of the building blocks for Web Services. It is well defined and widely
adopted in the industry. There are desires to either have a binary format or to use a com-
pression library to reduce the bandwidth used by Web Services.

4.3.5.1 Specification and Status

There are no standards currently defined for Binary XML or XML Compression.

4.3.5.2 Main Concepts

There is a need for smaller message sizes in areas that have restricted bandwidth.
Smaller sizes will also increase throughput for services that require high message vo l-

Analysis of Web Services Standards

36

ume. There are two ways to achieve small message sizes, use a binary format for XML
or compress the XML message.

There has been interest in a binary format of XML for a long time. A native binary en-
coding solution avoids the additional conversion from text to binary. This conversion
consumes additional processing power and memory. A binary XML standard would al-
low binary encoding to be the natural language that parsers dealt with. A standard would
allow off the shelf components to generate binary structures that could be used for stor-
age and transport. The W3C Workshop on Binary Interchange of XML Information Item
Sets was held at the end of September 2003. This represents progress towards a standard,
but is only the first steps.

The second way to decrease the message size is to use compression. The nature of XML
leads high levels of compression. The downside to compression is that there is an in-
crease in processing time to compress and decompress the messages on each side.
Some of the standard compression tools such as gzip or bzip2 can be used. The problem
with these is that they are not designed for XML so they cannot take advantage of the na-
ture of XML. Domain specific compression algorithms such as the ones used by the
Web3D Consortium’s Extensible 3D (X3D) have achieved compression factors upwards
of 30 to 1. This is much greater than what gzip can do. A generic XML compression
scheme should be able to leverage XML Schema to obtain high levels of compression.
Unfortunately there is no standard for how this should be done, or how to define that the
Web Service is using compressed messages.

4.3.5.3 Recommendation

Level 3: Questionable

There is no standard for binary XML or compressing the messages. There are products
that will generate proprietary binary XML messages and/or compression algorithms in-
cluding XMill, gzip or bzip2 that will compress the XML message before it is sent. Any
of the products or tools will work, but they will lead to interoperability problems.

Analysis of Web Services Standards

37

5 Web Services and Security

This section focuses on Web Services and security. When Web Services are used within
an organization (i.e. behind the firewall), security is not a great issue. However, once
Web Services-based exchanges branch out beyond an organization’s firewall and span
across organizations, security becomes a very large factor. Over the past several years,
various specifications have begun to emerge to address the issue of Web Services and
security. We address these specifications in this section.

We begin with a discussion of various security functionality categories, which are high-
level security areas that address various aspects of digital security. We believe it is neces-
sary that open standards provide mechanisms to address the various issues associated
with each of these categories as applied to Web Services. We then discuss emerging and
approved specifications in each security functionality category.

The following table lists the security functionality categories covered in this section:

Table 5.1 Security Functionality Categories

Category Description
Authentication Allowing individual users and organizations to vali-

date the identity of each party in a Web-based trans-
action.

Identity Management Involves the management of electronic user identities
across multiple applications.

Integrity Ensuring that a message or document that is digitally
signed has not been changed or corrupted in transit.

Confidentiality Protecting information from interception during
transmission.

Authorization Controlling access privileges to resources.

Non-repudiation The ability to ensure that a party to a contract or
communication cannot deny the authenticity of their
signature on a document or the sending of a message
that they originated.

Trust The characteristic that one entity is willing to rely
upon a second entity to execute a set of actions
and/or to make set of assertions about a set of sub-
jects and/or scopes.

Policy A set of information that conveys various characte r-
istics of, and rules for, a Web Service, such as au-
thorization and the types of security tokens that a
Web Service accepts.

We begin this section with a description of an emerging OASIS standard that provides a
framework for Web Services security through its specification of a standard mechanism
by which various security standards can be incorporated into a SOAP header. This
emerging OASIS standard is called Web Services Security (WS-Security).

Analysis of Web Services Standards

38

5.1 Security Framework - OASIS Web Services Security (WS-Security)

The WS-Security specification is part of the Global XML Web Services Architecture
(GXA). It was originally released in October 2001 and authored by Microsoft, IBM, and
Verisign. WS-Security was submitted to OASIS in June 2002 where it is now being de-
veloped under the OASIS Web Services Security TC. WS-Security forms the basis for
many other GXA specifications, and thus is considered "The Cornerstone of GXA."

Many Web Service interactions today utilize Secure Socket Layer/Transport Layer Secu-
rity (SSL/TLS) for their transmission security requirements. While this technique works
well in point-to-point scenarios, there is a need to maintain secure contexts over multi-
point message paths where trust domains need to be crossed (such as between organiza-
tions)—that is, to support end-to-end message- level security, not just transport- level se-
curity. WS-Security addresses this need.

5.1.1 Specification and Status

This section references the following specifications:

• WS-Security: SOAP Message Security (OASIS TC Approved Specification,
August 2003)

• WS-Security: Username Token Profile (OASIS TC Approved Specification,
August 2003)

• WS-Security: X.509 Token Profile (OASIS TC Approved Specification, Au-
gust 2003)

These three specifications are in OASIS public review until 19 October 2003, at which
time they may become OASIS standards.

5.1.2 Main Concepts

Secure Message Exchanges

WS-Security defines a standard set of SOAP extensions that implement message-level
integrity and confidentiality for secure message exchanges. It also provides a general-
purpose mechanism for associating security tokens with message content, and it supports
multiple security token formats. WS-Security is designed to support a wide variety of se-
curity models—i.e. it is designed to support multiple security token formats, multiple
trust domains, multiple signature formats, and multiple encryption technologies. This in-
cludes existing security models, as well as security models that may be released in the
future. WS-Security supports several of the security functionality categories discussed
above, including authentication, integrity, confidentiality, and non-repudiation.

The following figure demonstrates how WS-Security enables the maintenance of a secure
context over a multi-point message path. It denotes three Web participants—a "sender"
Web Service, an "intermediary" Web Service, and a "receiver" Web Service. Rather than
carrying a separate security context from one participant to another (as would be neces-
sary using SSL/TLS), WS-Security allows for the security context to be carried over the
entire interaction as a "security umbrella":

Analysis of Web Services Standards

39

Figure 5.1 WS-Security Context Participants

Source: Joseph M. Chiusano,
 “Web Services Security and More:

 The Global XML Web Services
 Architecture (GXA)”, Deve loper.com

Security Tokens

Examples of security tokens that WS-Security supports are an X.509 certificate or a user-
name/password.

The “X.509 Token Profile” specification describes the use of the X.509 authentication
framework with the SOAP Message Security specification (the “core” specification). An
X.509 certificate may be used to va lidate a public key that may be used to authenticate a
WS-Security-enhanced message or to identify the public key with which a WS-Security-
enhanced message has been encrypted.

The following example illustrates the specification of an X.509 certificate using WS-
Security:
[01] <?xml version="1.0" encoding="utf-8"?>
[02] <S:Envelope
[03] <S:Header>
[04] <wsse:Security>
[05] <wsse:BinarySecurityToken
[06] wsu:Id="X509Token">
[07] ValueType="wsse:X509v3"
[08] EncodingType="wsse:Base64Binary"
[09] MIIEZzCCA9CgAwIBAgIQEmtJZc0rqrKh5i...
[10] </wsse:BinarySecurityToken>
[11] <ds:Signature>
[12]
[13] <ds:SignedInfo>
[14] <ds:Reference URI=”#X509Token”>…</ds:Reference>
[15] </ds:SignedInfo>
[16] <ds:SignatureValue>BL8jdfToEb1l/vXcMZNNjPOV...
[17] </ds:SignatureValue>
[18]
[19] </ds:Signature>
[20] </wsse:Security>
[21] </S:Header>
[22] <S:Body wsu:Id="MsgBody"> </S:Body>
[23] </S:Envelope>

In the above example, the X.509 certificate information is specified within a
<wsse:BinarySecurityToken> element [lines 05-10]. The certificate is referenced by
URI within a signature, using W3C XML Signature [line 14]. The <wsse:Security>

Analysis of Web Services Standards

40

element [line 04] is the “main” WS-Security element into which all WS-Security SOAP
extensions are placed.

The “Username Token Profile” specification describes how to use a username token (and
optionally a password) with the SOAP Message Security specification.

The following example illustrates the specification of a username and password using
WS-Security:
[01] <?xml version="1.0" encoding="utf-8"?>
[02] <S:Envelope
[03] <S:Header>
[04] <wsse:Security>
[05] <wsse:UsernameToken>
[06] <wsse:Username>Zoe</wsse:Username>
[07] <wsse:Password>MyPassword</wsse:Password>
[08] </wsse:UsernameToken>
[09]
[10] </wsse:Security>
[11] </S:Header>
[12]
[13] </S:Envelope>

In the above example, the username and password are specified within a
<wsse:UsernameToken> element [lines 05-08]. Because the password in the above ex-
ample is clear text [line 07], it should be sent on a secured channel; otherwise, it should
be obscured by creating a password digest.

Upcoming Features

Now that the above specifications have been completed, the OASIS WS-Security TC has
begun focusing on the creation of various token profile specifications, including Kerbe-
ros, XrML and SAML.

Message Integrity and Confidentiality

WS-Security also provides message integrity and confidentiality through its use of the
W3C XML Signature and W3C XML Encryption specifications. Message integrity is
provided by XML Signature in conjunction with security tokens to ensure that modifica-
tions to messages are detected, while message confidentiality leverages XML Encryption
in conjunction with security tokens to keep portions of a SOAP message confidential.

More is Required Beyond Message -Level Authentication

It should be noted that while the message-level authentication mechanisms provided by
WS-Security are essential, more is required than just message- level authentication. That
is, the other aspects of security discussed in this document (session- level authentication,
access control mechanisms, security policies, etc.) – along with message- level authentica-
tion - serve to provide a comprehensive security solution.

5.1.3 Assessment

Table 5.2 Assessment of WS-Security

Category Information Rating
Specification phase OASIS TC Approved Specification MEDIUM

Analysis of Web Services Standards

41

Category Information Rating
Open standard YES HIGH

Potential to become open stan-
dard

 N/A

Rate of advancement N/A
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations 1 LOW

5.1.4 Implementations

• Microsoft Web Services Enhancements (WSE):
http://msdn.microsoft.com/webservices/building/wse/default.aspx

5.1.5 Recommendation

Level 2: Emerging

We believe that WS-Security will have the largest single impact on the advancement of
Web Services of any of the specifications discussed in this section. The main reasons for
this recommendation level are the current status of the WS-Security specifications (not
yet OASIS standards), as well as a low number of implementations. If WS-Security be-
comes an OASIS standard and more implementations emerge, it may then be considered
as “Level 1: Suitable For Use”.

5.2 Authentication/Identity Management

Authentication involves allowing individual users and organizations to validate the iden-
tity of each party in a Web-based transaction. Identity management involves the man-
agement of electronic user identities across multiple applications. Because these security
functional categories are closely related, we discuss them in the same section.

The following specifications are discussed in this section:

• OASIS Security Assertion Markup Language (SAML)
• The Liberty Alliance
• Web Services Federation Language (WS-Federation)
• OASIS XML Common Biometric Format (XCBF)

5.2.1 OASIS Security Assertion Markup Language (SAML)

OASIS Security Assertion Markup Language (SAML) is an XML-based framework for
exchanging security information. It is being developed by the OASIS Security Services
Technical Committee (SSTC). One major advantage of using SAML is that it allows se-
curity domains to be crossed more easily. The security information that SAML addresses
is expressed in the form of assertions about subjects, where an assertion is a declaration
of certain facts, and a subject is an entity (either human or computer) that has an identity
in some security domain. For example, an assertion can be made that a particular client

Analysis of Web Services Standards

42

was granted “update” privileges to a specific database resource at a certain time. This in-
formation may result in the client being granted the same privileges at a later time with-
out being re-authenticated.

5.2.1.1 Specification and Status

This section references the following specification:

• SAML Version 1.1 (OASIS Standard, September 2003)

5.2.1.2 Main Concepts

SAML Statements

SAML uses three types of “statements” about subjects:

Authentication statement: Expresses that the issuing authority authenticated a specific
subject at a given time. For example, “Subject A has been authenticated by means B at
time C”.

Attribute statement: Describes specific attributes of a subject. For example, “Subject A
is associated with the department Human Resources”.

Authorization decision statement: Expresses whether a given subject has been granted
specific permissions to access a particular resource. For example, “Subject A has been
granted permission to access resource B with privilege C at time D”.

The following example illustrates an authentication statement:
[01] <saml:assertion Issuer=“issuer1.com”…>
[02] <saml:Conditions NotBefore=… NotAfter=…/>
[03] <saml:AuthenticationStatement
[04] AuthenticationMethod=”urn:oasis:names:tc:SAML:1.0:am:X509-PKI”
[05] AuthenticationInstant=”2003-04-11T21:41:00Z”>
[06] <saml:subject …>John Smith</saml:subject>
[07] </saml:AuthenticationStatement>
[08] <saml:AttributeStatement>
[09] <saml:subject …>John Smith</saml:subject>
[10] <saml:Attribute AttributeName=“Department” …>
[11] <saml:AttributeValue>Human Resources</AttributeValue>
[12] </saml:Attribute>
[13] <saml:Attribute AttributeName=“ReportsTo” …>
[14] <saml:AttributeValue>Mary Jones</AttributeValue>
[15] </saml:Attribute>
[16] </saml:AttributeStatement>
[17] </saml:Assertion>

The above example expresses that a subject named “John Smith” [line06] was authent i-
cated by use of an X.509 public key [line 04] at a given date and time [line 05]. An at-
tribute statement [lines 08-16] is also included that expresses several attributes of this
subject, specifically that the subject works for the Human Resources department [lines
10-12] and report to Mary Jones [lines 13-15].

The following example illustrates an authorization decision statement:
[01] <saml:Assertion …>
[02] <saml:Conditions …/>
[03] <saml:AuthorizationDecisionStatement
[04] Decision=“Permit”

Analysis of Web Services Standards

43

[05] Resource=“http://example.com/report1.htm”>
[06] <saml:Action>read</saml:Action>
[07] <saml:Subject>
[08] <saml:NameIdentifier
[09] SecurityDomain=“somedomain.com”
[10] Name=“John Smith” />
[11] </saml:Subject>
[12] </saml:AuthorizationDecisionStatement>
[13] </saml:Assertion>

The above example expresses that a subject named “John Smith” [line 10] in security
domain “somedomain.com” [line 09] has been granted “read” access [line 06] to a report
found at URL “http://example.com/report1.htm” [line 05].

SAML Domain Model

The SAML Domain Model describes the mechanisms by which clients can request asser-
tions from “SAML authorities” and receive a response from them. This model is exhib-
ited in the following figure:

Figure 5.2 The SAML Domain Model

Source: SAML Version 1.1 Specification

The above figure illustrates three types of SAML authorities at the top:

• An Authentication Authority (source of authentication assertions)

• An Attribute Authority (source of attribute assertions)

• A Policy Decision Point, or PDP (creates authorization decision assertions based
on multiple inputs)

The Credentials Collector requests an authentication assertion for a particular subject
from the Authentication Authority. This request returns one or more statements about au-
thentication acts that have occurred in previous interactions between the indicated subject

Analysis of Web Services Standards

44

and the Authentication Authority. The Authentication Authority also requests one or
more attribute assertions for the subject from the Attribute Authority. Additionally, the
Authentication Authority queries the Policy Decision Point (PDP) providing it with the
subject’s attributes and the requested action by the subject, and receives an authorization
decision assertion as to whether the requested action by the subject on the given resource
should be allowed. A Policy Enforcement Point (PEP) as part of access control then en-
forces this authorization decision whenever an application request is made in the future
regarding this subject, resource, and action.

Single Sign-On (SSO)

One major design goal of SAML is single sign-on (SSO) – the sharing of authentication
information across different applications so that a user can authenticate in one domain
and use resources in other domains without re-authenticating. This concept is shown in
the following figure:

Figure 5.3 Concept of Single Sign-on

Source: Seshardri Gokul,
 “Authenticating Web Services

with SAML”, informIT.com

In the above figure, a subject is authenticated in a domain (Domain 1) and their creden-
tials are then shared with other domains (Domain 2 and Domain 3). This alleviates the
need for the subject to sign on within domains 2 and 3.

SAML and Web Services

The following two aspects of SAML and Web Services will be discussed in this section:

• SAML SOAP Binding: Defines how to use SOAP to send and receive SAML re-
quests and responses.

Analysis of Web Services Standards

45

• Web Services-Based Exchanges: Using SAML to secure Web Services-based ex-
changes.

SAML SOAP Binding

SAML currently defines only one binding: SOAP over HTTP. The system model used for
SAML conversations over SOAP is a simple request-response model in which a system
entity sends a SAML request to a SAML responder, which sends back a SAML response.

The following is an example of a SOAP-over-HTTP request:
[01] POST /SamlService HTTP/1.1
[02] Host: www.example.com
[03] Content-Type: text/xml
[04] Content-Length: nnn
[05] SOAPAction: http://www.oasis-open.org/committees/security
[06] <SOAP-ENV:Envelope
[07] xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”>
[08] <SOAP-ENV:Body>
[09] <samlp:Request xmlns:samlp:=”…” xmlns:saml=”…” xmlns:ds=”…”>
[10] <ds:Signature> … </ds:Signature>
[11] <samlp:AuthenticationQuery>
[12]
[13] </samlp:AuthenticationQuery>
[14] </samlp:Request>
[15] </SOAP-ENV:Body>
[16] </SOAP-ENV:Envelope>

In the above example, a request [lines 09-14] is made for an assertion containing an au-
thentication statement from a SAML authentication authority. The
<samlp:AuthenticationQuery> element [lines 11-13] would contain the details pertinent
to the assertion request.

Web Services-Based Exchanges

SAML can also be used to secure Web Services-based exchanges by authenticating re-
questors to Web Services, and Web Services to other Web Services. The single sign-on
capabilities of SAML can also be used to authenticate a requestor across multiple Web
Services. The OASIS WS-Security TC is in the process of completing a SAML profile
that describes the carrying of SAML assertions in a WS-Security header.

Future Enhancements

Plans for the SAML Version 2.0 specification currently include the following:

• Incorporation of new features such as session support, exchange of metadata to
ensure more interoperable interactions, and collection of credentials

• Support for full identity federation through integration of the specifications con-
tributed to the SSTC by the Liberty Alliance

5.2.1.3 Assessment

Table 5.3 Assessment of SAML

Category Information Rating
Specification phase OASIS Standard HIGH

Analysis of Web Services Standards

46

Category Information Rating
Open standard YES HIGH

Potential to become open
standard

 N/A

Rate of advancement N/A
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations 9 MEDIUM

5.2.1.4 Implementations

The following are three examples of identified implementations:

• SunONE Identity Server: http://xml.coverpages.org/ni2003-01-16-a.html

• Netegrity SAML Affiliate Agent:
http://xml.coverpages.org/NetegrityAAgent.html

• Novell iChain: http://xml.coverpages.org/Novell- iChain.html

5.2.1.5 Recommendation

Level 1: Suitable For Use

SAML has gained wide acceptance in many different industries and settings. We attribute
this wide acceptance mostly to the high impact of its capabilities not only on Web Ser-
vices security, but also on digital security in general. We foresee the number of SAML
implementations growing steadily in the medium- and long-term future.

5.2.2 Liberty Alliance

The Liberty Alliance Project is an initiative comprised of 160 organizations whose mis-
sion is to drive a new level of trust, commerce, and communications on the Internet
through the creation of open technical specifications. Its members include organizations
such as American Express, Hewlett Packard, RSA Security, Sun Microsystems, and
America Online. Its federal membership includes the U.S. Department of Defense and the
U.S. General Services Administration. The Liberty architecture consists of a multi- level
layered specification set, based on open standards including SAML and SOAP. The vi-
sion of the Liberty Alliance is to enable a networked world in which individuals and
businesses can more easily conduct transactions while protecting the privacy and security
of vital identity information.

5.2.2.1 Specification and Status

This section references the following specifications:

• Liberty Alliance Architecture Overview Version 1.1 (Final, January 2003)

• Liberty Identity Web Services Framework (ID-WSF) Overview Version 1.2-06
(Draft, July 2003)

Analysis of Web Services Standards

47

5.2.2.2 Main Concepts

Federated Network Identity/Single Sign-On

The Liberty Alliance specifications cover two main concepts:

• Federated network identity
• Single sign-on

The term network identity refers to the global set of attributes that are contained in an in-
dividual’s various accounts with different service providers. It can include information
such as name, phone number, Social Security Number, credit records, etc. The notion of a
federated network identity means tha t information particular to an individual may be ad-
ministered by the user and securely shared with entities of the user’s choosing.

A federated network identity model ensures that critical private information is used by
appropriate parties within a circle of trust. A circle of trust is a federation of service pro-
viders and identity providers that have business relationships based on Liberty architec-
ture and operational agreements with whom users can transact business in a secure and
apparently seamless environment. Circles of trust can be enterprise circles of trust or con-
sumer circles of trust, as shown in the following figure:

Figure 5.4

Figure 5.5 Federated Network Identity and Circles of Trust

Source: Liberty Alliance Architecture
Overview Version 1.1 Specification

The combination of federated network identity and single sign-on is known as federated
single sign-on. This capability enables users to sign-on with one member of an affiliate
group and subsequently use other sites within the group without having to sign-on again.

Analysis of Web Services Standards

48

The Liberty Alliance and Web Services

One of the major components of the Liberty architecture is the Liberty Identity Web Ser-
vices Framework (ID-WSF). This component provides a basic framework for identity
services, such as Web-based identity service discovery and invocation. It also provides a
SOAP binding for the framework.

An identity service is an abstract notion of a Web Service that acts upon some resource to
retrieve information about an identity, update information about an identity, or perform
some action for the benefit of some identity. An example of a resource is a calendar con-
taining appointments for a particular identity. A discovery service is an identity service
that allows requesters to discover resource offerings – thus, it is essentially a Web Ser-
vice interface for "discovery resources", each of which can be viewed as a registry of re-
source offerings. Entities can place resource offerings in a discovery resource, and this
will allow other entities to discover these resource offerings. The discovery service can
also function as a security token service, issuing security tokens to the requester that the
requester will use in the request to the discovered identity service.

Once a service has been discovered and sufficient authorization data has been received
from a trusted authority, the invoking entity (Web Services Consumer) may invoke the
service at the hosting/relying entity (Web Services Provider).

The Liberty Alliance and SAML

The Liberty Alliance incorporated SAML into its Version 1.1 specifications introduced in
2002. The Liberty Alliance chose to extend SAML in Version 1.1 to include security en-
hancements vital to identity management, such as:

• Opt-in account linking
• Simple session management
• Global logout capabilities

The Liberty Alliance also contributed its Version 1.1 federated network identity specifi-
cations to the OASIS Security Services TC in April 2003, for possible incorporation of
the Version 1.1 specification features (such as those described above) in future versions
of SAML.

While the work of SAML and that of the Liberty Alliance may appear to conflict, it is
actually complementary. Both specifications address mechanisms for single sign-on;
however, SAML concentrates more heavily on the definition and handling of security
assertions, while the Liberty Alliance concentrates more heavily on the notion of feder-
ated network identities. However, the planned incorporation of full identity federation
into SAML Version 2.0 may very well position the Liberty Alliance and SAML as com-
petitors in the realm of identity federation.

5.2.2.3 Assessment

Table 5.4 Assessment of Liberty Alliance

Category Information Rating
Specification phase • Liberty Alliance Architecture Over-

view Version 1.1: Final
MEDIUM

Analysis of Web Services Standards

49

• Liberty Identity Web Services
Framework (ID-WSF) Overview Ver-
sion 1.0-06: Draft

Open standard YES HIGH
Potential to become open

standard
 N/A

Rate of advancement Liberty Identity Web Services Framework
(ID-WSF) Overview Version 1.0-06 pub-
lication date: July 2003

HIGH

Potential impact on Web Ser-
vices

 HIGH

Maturity level of consortium 2 years MEDIUM
Number of implementations 19 HIGH

5.2.2.4 Implementations

The following URL provides a listing of current Liberty Alliance implementations:

• http://www.projectliberty.org/resources/enabled.html

5.2.2.5 Recommendation

Level 2: Emerging

There are a high number of Liberty Alliance implementations, and it has a large number
of members (more than 160). However, we view the Liberty Alliance as a relatively im-
mature consortium (2 years old). Once the Liberty Alliance consortium becomes more
mature, its specifications may then be considered as “Level 1: Suitable For Use”.

We are skeptical of the general acceptance of the concept of federated network identities,
due to the high risk of concentrating multiple attributes of an individual’s identity into a
single entity. We also recommend that DISA monitor the advancement of SAML Version
2.0 and its potential overlap and competition with the Liberty Alliance specifications.

5.2.3 WS-Federation (GXA)

The WS-Federation specification is part of the Global XML Web Services Architecture
(GXA). It was authored by Microsoft, IBM, Verisign, BEA Systems, and RSA Security.
WS-Federation builds on WS-Trust to provide mechanisms for federated identity and se-
curity. In doing so, WS-Federation covers many of the same aspects that Liberty Alliance
and OASIS SAML cover; such occurrences will be highlighted in this section. According
to Microsoft, WS-Federation is "very complementary" to the Liberty Alliance's work in
that Liberty Alliance “targets the specific scenario of consumers opting to allow their in-
formation to be shared among corporations or service providers, whereas WS-Federation
addresses the broader issue of federating multiple identity systems to one another.”

5.2.3.1 Specification and Status

This section references the following specification:

Analysis of Web Services Standards

50

• WS-Federation Version 1.0 (July 2003)

5.2.3.2 Main Concepts

WS-Federation Model

The WS-Federation Model is shown in the following figure:

Figure 5.6 WS-Federation Model

Source: WS-Federation
Version 1.0 Specification

There are three key components to this model:

• Attribute Service: Used to obtain authorized information about a principal (a
system entity that may or may not represent a person). Similar in concept to
SAML’s attribute authority.

• IP/STS (Identity Provider/Security Token Service): Builds upon the WS-Trust
notion of a Security Token Service (STS) to include identity management and au-
thentication functions. The Identity Provider function is similar in concept to Lib-
erty Alliance’s identity service.

• Pseudonym Service: A Web Service that maintains alternate identity information
about principals within a trust realm or federation.

These concepts are discussed in further detail below.

Virtual Security Domains/Single Sign-On (SSO)

WS-Federation allows a set of organizations to establish a single, virtual security domain.
For example, a travel agent, an airline and a hotel chain may set up such a federation.
This is similar in concept to Liberty Alliance’s notion of federated network identity. Ad-
ditionally, an end-user that "logs into" any member of the federation has effectively

Analysis of Web Services Standards

51

logged into all of the members. This concept of single sign-on is also covered by both
Liberty Alliance and SAML. The concept of a federation as a collection of realms that
have established trust is similar to Liberty Alliance’s concept of a circle of trust.

Simple Federation Scenario

The following figure illustrates a simple federation scenario in which security tokens
from the requestor’s trust realm are used to acquire security tokens from the resource’s
trust realm in order to access the resource/service:

Figure 5.7 Using Security Tokens in WS-Federation

Source: WS-Federation
Version 1.0 Specification

In the above example, a trust relationship has been established between the token ser-
vices. An identity token is obtained by the first STS (step 1), and – because of the trust
relationship – is accepted by the second STS (step 2) as proof of identity for obtaining an
access token for the resource shown in the figure. Once the access token is obtained, the
requestor can then access the resource (step 3). It is important to note that the resource
may be a Web Service.

Such trust relationships also allow (fo r example) a token from one STS to be exchanged
for another at a second STS, or possibly stamped or cross-certified by a second STS.

Additional Features

WS-Federation also contains a feature known as a pseudonym service that maintains al-
ternate identity information (“aliases”) about principals within a trust realm or federation.
This allows a principal to have different aliases at different resources/services or in dif-
ferent realms, and to optionally have the pseudonym change per-service or per- login.
This feature protects the privacy of the end-user and helps prevent access of end-user at-
tributes by unauthorized parties.

Analysis of Web Services Standards

52

WS-Federation also provides mechanisms for delegation – that is, to indicate that a re-
quested or issued token should be delegated to another identity. The original requestor's
policy indicates the degree of delegation it is willing to support.

Relation to Microsoft .NET Passport

Other than the fact that Microsoft is behind both initiatives, there is no direct relation be-
tween WS-Federation and Microsoft .NET Passport – although the two initiatives address
generally the same functionality. Microsoft .NET Passport is one of the largest online au-
thentication services in operation. Microsoft has constructed the Passport service to make
it relatively easy for developers to build in Passport authentication to XML Web Ser-
vices. The Passport model is similar in concept to Liberty Alliance’s notion of a federated
network identity, in which Microsoft “owns” all of the user’s identity information. It is
important to note that .NET Passport is not an open standard.

5.2.3.3 Assessment

Table 5.5 Assessment of WS-Federation

Category Information Rating
Specification phase Initial public draft release LOW

Open standard NO LOW
Potential to become open

standard
 MEDIUM

Rate of advancement Publication date: July 2003 HIGH
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium N/A
Number of implementations None LOW

5.2.3.4 Implementations

None.

5.2.3.5 Recommendation

Level 3: Questionable

Although we believe that WS-Federation can have a high impact on Web Services, it is
not being developed within an open standards consortium. However, The authors of WS-
Federation have publicly pledged to submit the specification to a standards consortium.
No decision has been made about which standards consortium, but, according to the au-
thors, OASIS is a "very likely candidate." If the WS-Federation specification is ever
transferred to an open standards consortium, it may then be considered as “Level 2:
Emerging”.

5.2.4 OASIS XML Common Biometric Format (XCBF)

Biometrics is the practice of verifying one's identity based on a physiological or behav-
ioral characteristic, such as fingerprints, handwriting or retinal scans for the purpose of

Analysis of Web Services Standards

53

recognizing the identity of an individual, or to verify a claimed identity. The OASIS
XML Common Biometric Format (XCBF) specification defines cryptographic messages
represented in XML markup for the secure collection, distribution, and processing, of
biometric information. Mechanisms and techniques are described for the secure transmis-
sion, storage, and integrity and privacy protection of biometric data. XCBF can be used
in applications as varied as homeland security, corporate privacy, law enforcement, and
biotechnical research.

5.2.4.1 Specification and Status

This section references the following specifications:

• XML Common Biometric Format (XCBF) Version 1.1 (OASIS Standard, August
2003)

• WS-Security XCBF Token Profile (Working Draft 1.0, November 2002)

We will concentrate on the “XCBF Token Profile” specification in this section.

5.2.4.2 Main Concepts

XCBF and Web Services

The Web Services Security XCBF Token Profile describes how to use XML Common
Biometric Format (XCBF) cryptographic messages within WS-Security. In this profile, a
common XCBF security token is defined to convey and manage biometric information
used for authentication and identification. The general processing model for WS-Security
with XCBF objects is no different from that of other token formats described in WS-
Security.

The following example illustrates an XCBF security token used with WS-Security:
[01] <?xml version="1.0" encoding="utf-8"?>
[02] <S:Envelope
[03] <S:Header>
[04] <wsse:Security>
[05] <wsse:XCBFSecurityToken
[06] wsu:Id="XCBF-biometric-object">
[07] ValueType="wsse:XCBFv1"
[08] EncodingType="wsse:XER">
[09] <BiometricSyntaxSets>
[10] <BiometricSyntax>
[11] <biometricObjects>
[12] <BiometricObject>
[13] <biometricHeader>
[14] <version>0</version>
[15] <recordType>
[16] <id>4</id>
[17] </recordType>
[18] <dataType>
[19] <processed/>
[20] </dataType>
[21] <purpose>
[22] <audit/>
[23] </purpose>
[24] <quality>80</quality>
[25] <validityPeriod>
[26] <notBefore> 1980.10.4 </notBefore>

Analysis of Web Services Standards

54

[27] <notAfter>2003.10.3.23.59.59</notAfter>
[28] </validityPeriod>
[29] <format>
[30] <formatOwner>
[31] <oid> 2.23.42.9.10.4.2 </oid>
[32] </formatOwner>
[33] </format>
[34] </biometricHeader>
[35] <biometricData>
[36] 0A0B0C0D0E0F1A1B1C1D1E1F2A2B2C2D2E2F
[37] </biometricData>
[38] </BiometricObject>
[39] </biometricObjects>
[40] </BiometricSyntax>
[41] </BiometricSyntaxSets>
[42] </wsse:XCBFSecurityToken>
[43] </wsse:Security>
[44] </S:Header>
[45] <S:Body wsu:Id="MsgBody"> </S:Body>
[46] </S:Envelope>

In the above example, the XCBF token is specified within a
<wsse:XCBFSecurityToken> element [lines 05-42]. Information such as the following
is specified:

• recordType: Identifier value of “4” indicates a “facial features” record [lines 15-
17]

• dataType: Indicates that “processed” (versus “raw” or “intermediate”) data is
used [lines 18-20]

• quality: Indicates a data quality value of 80 (in the “excellent” range) [line 24]
• biometricData: A string of hexadecimal characters containing the actual biome t-

ric data [lines 35-37]

5.2.4.3 Assessment

Table 5.6 Assessment of XCBF

Category Information Rating
Specification phase • XML Common Biometric

Format (XCBF) Specification
Version 1.1: OASIS Standard

• WS-Security XCBF Token
Profile: Working Draft

MEDIUM

Open standard YES HIGH
Potential to become open

standard
 N/A

Rate of advancement Web Services Security XCBF To-
ken Profile publication date: No-
vember 2002

MEDIUM

Potential impact on Web Ser-
vices

 MEDIUM

Maturity level of consortium 10 years HIGH

Analysis of Web Services Standards

55

Category Information Rating
Number of implementations None LOW

5.2.4.4 Implementations

None

5.2.4.5 Recommendation

Level 3: Questionable

The main reason for this recommendation level is the lack of advancement of the Web
Services Security XCBF Token Profile; additionally, there are no identified implementa-
tions of this profile. If this profile is advanced in the near future and some implementa-
tions are announced, it may then be considered as “Level 2: Emerging”.

5.3 Integrity/Non-Repudiation

Integrity involves ensuring that a message or document that is digitally signed has not
been changed or corrupted in transit. Non-repudiation is the ability to ensure that a party
to a contract or communication cannot deny the authenticity of their signature on a
document or the sending of a message that they originated. Because these security func-
tional categories are closely related, we discuss them in the same section.

WS-Security provides message- level integrity and non-repudiation. However, this func-
tionality is also required at the session level. The Web Services Secure Conversation
Language (WS-SecureConversation) specification provides session- level integrity and
non-repudiation. WS-SecureConversation also provides session-level confidentiality.

The following specification is discussed in this section:

• Web Services Secure Conversation Language (WS-SecureConversation)

5.3.1 Web Services Secure Conversation Language (WS-SecureConversation)

The OASIS WS-Security specification readily supports Web Service scenarios that in-
volve only the short sporadic exchange of a few messages. It also supports scenarios that
involve long- duration, multi-message conversations between the Web Services. How-
ever, WS-Security’s solution for this second type of scenario is not optimal for several
reasons:

• Its repeated use of computationally expensive cryptographic operations such as
public key validation

• Sending and receiving many messages using the same cryptographic keys allows
brute force attacks that "break the code”

It is for these very reasons that protocols such as HTTP/S use public keys to perform a
simple negotiation that defines conversation-specific keys. This key exchange allows
more efficient security implementations and also decreases the amount of information
encrypted with a specific set of keys.

Analysis of Web Services Standards

56

The WS-SecureConversation specification provides similar support for WS-Security.
WS-Security can be used with public keys to start a "conversation" or "session," and WS-
SecureConversation can then be used to agree on session-specific keys for signing and
encrypting information. The WS-SecureConversation specification is part of the Global
XML Web Services Architecture (GXA). It was authored by Microsoft, IBM, Verisign,
and RSA Security.

5.3.1.1 Specification and Status

This section references the following specification:

• WS-SecureConversation Version 1.0 (December 2002).

5.3.1.2 Main Concepts

Security Context Token

The main entity in WS-SecureConversation is a security context token. A security context
token is a token that is used by both parties in a multi-message exchange as part of an es-
tablished security context—it is also referred to as a "shared secret". The lifetime of a
security context token extends throughout the communications session, after which it
ceases to exist—hence the tighter security advantage over the message authentication
model of WS-Security.

The following example illustrates the use of a security context token in establishing a se-
curity context:
[01] <wsse:Security>
[02] <wsse:SecurityContextToken>
[03] <wsu:Identifier>http://securitycontextid.com</wsu:Identifier>
[04] <wsu:Expires>2002-08-31T13:20:00-05:00</wsu:Expires>
[05] <wsse:Keys>
[06] <xenc:EncryptedKey Id="newSharedSecret">
[07] ...
[08] </xenc:EncryptedKey>
[09] </wsse:Keys>
[10] </wsse:SecurityContextToken>
[11] </wsse:Security>

The above specifies a security context identifier [line 03] and key that is used as the
shared secret [lines 06-08].

Establishing Security Context

WS-SecureConversation presents three ways in which a security context can be estab-
lished:

• The security token is created by a security token service, as defined in WS-Trust
• The security token is created by one of the communicating parties, and propa-

gated with a message
• The security token is created through negotiation between participants

Derived Keys

WS-SecureConversation also specifies the use of derived keys in a multi-message ex-
change. Derived keys further enhance security by allowing a different key to be used for

Analysis of Web Services Standards

57

each exchange between participants, thereby eliminating the need to store a particular
key. Each successive key is derived from a key that was used on a previous exchange
within the communications session using an algorithm defined in WS-
SecureConversation.

The following example illustrates a derived key:
[01] <DerivedKeyToken>
[02] <SecurityTokenReference>
[03] ...
[04] </SecurityTokenReference>
[05] <Generation>4</Generation>
[06] </DerivedKeyToken>

In the above example, the derived key is based on the 5th generation [line 05] of the
shared secret (note that generations start with 0).

5.3.1.3 Assessment

Table 5.7 Assessment of WS-SecureConversation

Category Information Rating
Specification phase Initial public draft release LOW

Open standard NO LOW
Potential to become open

standard
 MEDIUM

Rate of advancement Publication date: December 2002 MEDIUM
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium N/A
Number of implementations 1 LOW

5.3.1.4 Implementations

• Microsoft Web Services Enhancements (WSE):
http://msdn.microsoft.com/webservices/building/wse/default.aspx

5.3.1.5 Recommendation

Level 3: Questionable

Although we believe that WS-SecureConversation can have a high impact on Web Ser-
vices, it is not being developed within an open standards consortium. If the WS-
SecureConversation specification is ever transferred to an open standards consortium, it
may then be considered as “Level 2: Emerging”.

5.4 Confidentiality

Confidentiality involves protecting information from interception during transmission.
This security functionality category is covered by WS-Security (message-level confiden-
tiality) and WS-SecureConversation (session-level confidentiality), both of which have
already been discussed.

Analysis of Web Services Standards

58

5.5 Trust

Trust can be defined as “the characteristic that one entity is willing to rely upon a second
entity to execute a set of actions and/or to make set of assertions about a set of subjects
and/or scopes”1.

The following specifications are discussed in this section:

• Web Services Trust Language (WS-Trust)

5.5.1 W3C Signature

5.5.2 WS-Trust (GXA)

The WS-Trust specification is part of the Global XML Web Services Architecture
(GXA). It was authored by Microsoft, IBM, Verisign, and RSA Security. WS-Trust de-
fines an extensible model for setting up and verifying trust relationships, allowing Web
Services to agree on which security servers they “trust” and to rely on these servers.

5.5.2.1 Specification and Status

This section references the following specification:

• WS-Trust Version 1.0 (December 2002)

5.5.2.2 Main Concepts

Trust Engine/Security Token Service

In order to secure a communication between two parties, the two parties must exchange
security credentials (either directly or indirectly). However, each party needs to deter-
mine if they can "trust" the asserted credentials of the other party. WS-Trust introduces
the notion of a trust engine, a conceptual component of a Web Service that evaluates the
security-related aspects of a message. A trust engine verifies that:

• The claims in a security token are sufficient to comply with the policy and that the
message conforms to the policy

• The attributes of the claimant are proven by the signatures

• The issuers of the security tokens are trusted to issue the claims they have made

For example, if a policy stated that only Kerberos tickets were accepted as a security to-
ken, the trust engine of a Web Service would enforce this requirement for all incoming
messages.

WS-Trust also introduces the notion of a security token service that issues security tokens
based on trust, similar to a certificate authority (CA). The following figure illustrates a
"sender" and "receiver" Web Service, each with its own trust engine. A security token
service is also depicted, from which the sender Web Service will request a security token
to be used for its interaction with the receiver Web Service. The sender Web Service can
request a security token based on the receiver Web Service's policies, using the mecha-

1 Source: WS-Trust Version 1.0 Specification.

Analysis of Web Services Standards

59

nisms described earlier in this article. The sender Web Service will use its trust engine to
authenticate the security token service, while the receiver Web Service will use its trust
engine to authenticate the sender Web Service.

Figure 5.8 Use of Trust Engines in WS-Trust

The following example demonstrates a request for a security token (X.509 certificate),
and the response with the certificate:
[01] <wsse:RequestSecurityToken>
[02] <wsse:TokenType>wsse:X509v3</wsse:TokenType>
[03] <wsse:RequestType>wsse:ReqIssue</wsse:RequestType>
[04] </wsse:RequestSecurityToken>
[05] <wsse:RequestSecurityTokenResponse>
[06] <wsse:RequestedSecurityToken>
[07] <BinarySecurityToken ValueType="wsse:X509v3"
[08] EncodingType="wsse:Base64Binary">
[09] MIIEZzCCA9CgAwIBAgIQEmtJZc0...
[10] </BinarySecurityToken>
[11] </wsse:RequestedSecurityToken>
[12] </wsse:RequestSecurityTokenResponse>

In the above example, the "ReqIssue" value [line 03] denotes the issuance of a security
token. Other valid values are "ReqValidate" (validate security token) and "ReqExchange"
(exchange security token).

The following figure illustrates this request/response interaction:

Analysis of Web Services Standards

60

Figure 5.9 WS-Trust Interactions

Source: WS-Trust
Version 1.0 Specification

In some cases, a security token service may choose to challenge the requestor of a secu-
rity token. For example, this may occur if the security token service does not trust the
nonce and timestamp (for example, the freshness) in the message. Or, the security token
service may challenge the signature within the message.

5.5.2.3 Assessment

Table 5.8 Assessment of WS-Trust

Category Information Rating
Specification phase Initial public draft release LOW

Open standard NO LOW
Potential to become open

standard
 MEDIUM

Rate of advancement Publication date: December 2002 MEDIUM
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium N/A
Number of implementations 1 LOW

5.5.2.4 Implementations

• Microsoft Web Services Enhancements (WSE):
http://msdn.microsoft.com/webservices/building/wse/default.aspx

Analysis of Web Services Standards

61

5.5.2.5 Recommendation

Level 3: Questionable

Although we believe that WS-Trust can have a high impact on Web Services, it is not
being developed within an open standards consortium. If the WS-Trust specification is
ever transferred to an open standards consortium, it should be considered as “Level 2:
Emerging”.

5.6 Authorization/Policy

Authorization involves controlling access privileges to resources. A policy is set of in-
formation that conveys various characteristics of, and rules for, a Web Service, such as
authorization and the types of security tokens that a Web Service accepts. Because these
security functional categories are closely related, we discuss them in the same section.

The following specifications are discussed in this section:

• OASIS XACML
• W3C Open Digital Rights Language (ODRL)
• OASIS Extensible Rights Markup Language (XrML)
• Web Services Policy Framework (WS-Policy)

5.6.1 OASIS eXtensible Access Control Markup Language (XACML)

OASIS eXtensible Access Control Markup Language (XACML) is an XML specification
for expressing policies for information access over the Internet. It is being deve loped by
the OASIS Access Control Markup Language (XACML) TC). In most cases today, or-
ganizations have widely dispersed security policies, with elements managed by different
departments. Consequently, it is very difficult to obtain an aggregated view of an organi-
zation’s access control policy, as well as modify it as necessary. XACML’s common lan-
guage for expressing security policies allows an enterprise to efficiently manage the en-
forcement of its security policy in all the components of its information systems.

5.6.1.1 Specification and Status

This section references the following specifications:

• XACML Version 1.0 (OASIS Standard, February 2003)

• XACML Profile for Web Services (Working Draft 04, September 2003)

The XACML Version 1.1 specification is currently in process.

5.6.1.2 Main Concepts

Subject/Resource/Action

XACML is based on three main concepts:

• Subject: An entity (human or system) that requests access to a resource

• Resource: A data, service, or system component to which access is requested

Analysis of Web Services Standards

62

• Action: An operation on a resource (such as “read”)

In XACML, a subject requests access to a resource to perform some action on that re-
source.

Policies and Rules

A policy in XACML is essentially a set of rules that form the basis for an authorization
decision. An example of a policy is “Any user with an e-mail name in the XYZ Corpora-
tion domain is allowed to perform any action on any resource”.

An authorization decision is the result of a decision request. An example of a decision
request is “User John Smith with e-mail name jsmith@abc.com would like to read finan-
cial records from the year 2002 at XYZ Corporation”. A decision request evaluates to
“Permit” (i.e. permit access to a resource), “Deny” (i.e. deny access to a resource), “Inde-
terminate” (i.e. a decision could not be determined), or “Not Applicable” (i.e. there is no
policy that applies to the request). An applicable policy for a decision request is located
based on the subject, resource, and action values in the decision request.

Policies are comprised of rules that are individual evaluated and whose evaluation results
are combined to arrive at an authorization decision.

Policy Processing

The following system entities are defined by XACML for its policy processing:

• Policy Access Point (PAP): Creates policies and makes them available to Policy
Decision Points (PDPs)

• Policy Decision Point (PDP): Evaluates applicable policies and renders authoriza-
tion decisions

• Policy Enforcement Point (PEP): Performs access control by making decision re-
quests and enforcing authorization decisions

• Policy Information Point (PIP): Acts as a source of attribute values

• Authorization decision statement: Expresses whether a given subject has been
granted specific permissions to access a particular resource

XACML and Web Services

The “XACML Profile for Web Services” defines mechanisms for enforcing access con-
trol to a Web Service endpoint, as well as expressing policies in areas such as reliable
messaging, privacy, trust, authentication, and cryptographic security. Policies are associ-
ated with Web Service endpoint definitions, with WSDL 1.1 ports are identified as re-
sources. Policies may also be targeted more finely than ports (i.e. to operations and mes-
sages).

The following is an example of XACML policy used in conjunction with a Web Service.
It references an online book club, and allows only members of the book club to order
items online from that book club:
[01] <?xml version=1.0" encoding="UTF-8"?>
[02] <Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
[03] xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Analysis of Web Services Standards

63

[04] xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy
[05] http://www.oasis-open.org/tc/xacml/1.0/cs-xacml-schema-policy-01.xsd"
[06] PolicyId="identifier:example:SimplePolicy1"
[07] RuleCombiningAlgId="identifier:rule-combining-algorithm:deny-

 overrides">
[08] <Description>
[09] XYZ Book Club “order” access control policy
[10] </Description>
[11] <Target>
[12] <Subjects>
[13] <AnySubject/>
[14] </Subjects>
[15] <Resources>
[16] <ResourceMatch MatchId=”equal”
[17] <AttributeValue
DataType=”anyURI”>serviceX:portX</AttributeValue>
[18] <ResourceAttributeDesignator AttributeID=
[19] ”urn:oasis:names:tc:xacml:1.0:attribute:portId

 DataType=”anyURI”/>
[20] </ResourceMatch>
[21] </Resources>
[22] <Actions>
[23] <AnyAction/>
[24] </Actions>
[25] </Target>
[26] <Rule Effect="Permit">
[27] <Description>
[28] Only members of XYZ Book Club can place orders.
[29] </Description>
[30] <Condition FunctionId="and">
[31] <Apply FunctionId="equal">
[32] <AttributeValue>member</AttributeValue>
[33] <SubjectAttributeDesignator AttributeId="membership-
status"/>
[34] </Apply>
[35] <Apply FunctionId="equal">
[36] <AttributeValue>order</AttributeValue>
[37] <ActionAttributeDesignator AttributeId="action-id"/>
[38] </Apply>
[39] </Condition>
[40] </Rule>
[41] </Policy>

The above policy is applicable to any subject [lines 12-14] and any action [lines 22-24].
The resource target is the port whose portId is “serviceX:portX” [line 17]. The policy
contains a single rule [lines 26-40], which states that the effect of the rule will be “Per-
mit” [line 26] only if the requestor has a membership status of “member” [lines 31-34]
and the requested action was “order” [lines 35-38].

XACML and SAML

XACML and SAML can be used in conjunction for authentication (SAML) and authori-
zation (XACML) in Web Services exchanges. For example, a SAML assertion can be
evaluated by a Web Service’s authentication mechanism as a first step to determining that
the subject that is making a request is who they claim to be. Once the subject is authent i-
cated, XACML would be invoked to check for the authenticated subject’s authorization
to perform the requested action.

We foresee a greater degree of interoperability between SAML and XACML in the fu-
ture. Consideration is being given for the SAML Version 2.0 specification to include

Analysis of Web Services Standards

64

mechanisms for issuing XACML requests and handling XACML responses, as well as a
potentially greater alignment between formats of subjects between SAML and XACML.

5.6.1.3 Assessment

Table 5.9 Assessment of XACML

Category Information Rating
Specification phase • XACML Version 1.0: OASIS

Standard
• XACML Profile for Web Ser-

vices: Working Draft

MEDIUM

Open standard YES HIGH
Potential to become open

standard
 N/A

Rate of advancement N/A
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations 2 MEDIUM

5.6.1.4 Implementations

The following URL provides a listing of current XACML implementations:

• http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

5.6.1.5 Recommendation

Level 2: Emerging

We believe that the functionality that XACML provides (access control for Web Ser-
vices) is greatly needed, and we foresee the specification as having a very high impact on
the advancement of Web Services. The main reason for this recommendation level is the
low level of XACML implementations currently available. If more implementations
emerge, it may then be considered for advancement to “Level 1: Suitable For Use”.

5.6.2 W3C Open Digital Rights Language (ODRL)

The W3C Open Digital Rights Language (ODRL) is an XML-based language for digital
rights management (DRM). DRM focuses on enabling secure distribution - and perhaps
more importantly, to disable illegal distribution - of paid content over the Web. Several of
the concepts covered by ODRL can also be applied to Web Services.

5.6.2.1 Specification and Status

This section references the following specification:

• Open Digital Rights Language (ODRL) Version 1.1 (W3C Note, September
2002)

Analysis of Web Services Standards

65

5.6.2.2 Main Concepts

ODRL Foundation Model

DRM covers the digital management of rights - be they rights in a physical manifestation
of a work (e.g. a book), or rights in a digital manifestation of a work (e.g. an e-book).
ODRL is a standard language and vocabulary for the expression of terms and conditions
over assets.

The ODRL Foundation Model illustrates the main entities represented in the ODRL
specification, and the relationships between them. It is shown in the following figure:

Figure 5.10 ODRL Foundational Model

Source: ODRL Version 1.1 Specification

This model consists of the following three core entities:

• Assets
• Rights
• Parties

An asset is any physical or digital content, such as a Web Service. Rights encompass us-
age rights for an asset, and include permissions. An example of a permission is “play a
video asset”. Constraints are used to limit permissions–for example, “play the video for a
maximum of 5 times”. Requirements are the obligations needed to exercise a permission–
for example, “play $5 each time you play the video”. Conditions specify exceptions that,

Analysis of Web Services Standards

66

if they become true, expire the permissions and possibly require renegotiation–for exam-
ple, “if credit card expires, then all permissions are withdrawn to play the video”.

A party may be an end user or a rights holder. End users are usually the asset consumers,
while rights holders are usually parties that have played some role in the creation, pro-
duction, distribution of the asset and can assert some form of ownership over the asset
and/or its permissions. Rights holders may also receive royalties.

Finally, offers and agreements are the recognized set of activities allowed over an asset.

ODRL and Web Services
Since ODRL identifies a digital asset via its URI, one can describe the rights over Web
Services using ODRL (i.e. to enforce access control). This is shown in the following ex-
ample:

[01] <agreement>
[02] <party>
[03] <context>
[04] <uid>urn:renato.iannella</uid>
[05] </context>
[06] <rightsholder/>
[07] </party>
[08] <asset>
[09] <context>
[10] <uid>http://example.com/my-web-service</uid>
[11] </context>
[12] </asset>
[13] <permission>
[14] <execute/>
[15] </permission>
[16] <party>
[17] <context>
[18] <uid>urn:people:jsmith</uid>
[19] </context>
[20] <rightsholder/>
[21] </party>
[22] </agreement>

In the above example, a user “jsmith” [line 18] has been granted permission to "execute"
a Web Service [lines 13-15] identified by URL http://example.com/my-web-service [line
10].

Future Releases

The authors of ODRL are planning new features for version 2.0 for early 2004. However,
it is not clear at this time if W3C will advance DRM specifications.

5.6.2.3 Assessment

Table 5.10 Assessment of ODRL

Category Information Rating
Specification phase W3C Note LOW

Open standard YES HIGH
Potential to become open stan-

dard
 N/A

Analysis of Web Services Standards

67

Category Information Rating
Rate of advancement Publication date: September 2002 LOW

Potential impact on Web Ser-
vices

 HIGH

Maturity level of consortium 9 years HIGH
Number of implementations None LOW

5.6.2.4 Implementations

While vendor implementations of ODRL exist, no current vendor implementations of
ODRL focusing on use in conjunction with Web Services have been identified.

5.6.2.5 Recommendation

Level 3: Questionable

The main reasons for this recommendation level are the lack of clear direction for ODRL
within W3C, and the fact that the access control capability for Web Services described
earlier can be carried out using other more advanced open standards (e.g. OASIS
XACML). Additionally, we do not foresee a need in the medium-term future for other
ODRL capabilities (such as payment) for Web Services. We therefore believe that this
specification may shift to “Level 4: Do Not Use” within the next year.

5.6.3 OASIS eXtensible Rights Markup Language (XrML)

The Extensible Rights Markup Language (XrML) provides a universal method for se-
curely specifying and managing rights and conditions associated with all kinds of re-
sources including digital content as well as services. XrML is being developed by the
OASIS Rights Language TC. XrML has its roots in the Xerox Palo Alto Research Center
(PARC), when it was first introduced in 1996 as Digital Property Rights (DPR). Using
XrML, anyone owning or distributing digital resources can specify and identify the par-
ties allowed to use those resources, the rights available to those parties, and the terms and
conditions under which those rights may be exercised.

XrML covers many of the same aspects that the W3C Open Digital Rights Language
(ODRL) covers; such occurrences will be highlighted in this section.

5.6.3.1 Specification and Status

This section references the following specification:

• Extensible Rights Markup Language (XrML) Version 2.1 Technical Overview
(Draft, May 2002)

5.6.3.2 Main Concepts

Core Elements

There are four core elements in XrML:

• Principal

Analysis of Web Services Standards

68

• Right
• Resource
• Condition

These four elements comprise a grant. A principal encapsulates the identification of a
party to whom rights are granted; it is similar in concept to a party in ODRL. A right is
the "verb" that a principal can be granted to exercise against some resource under some
condition; it typically specifies an action or a class of actions that a principal may per-
form on or using the associated resource. It is similar in concept to a right in ODRL. A
resource is the "object" to which a principal can be granted a right; it is similar in concept
to an asset in ODRL. Finally, a condition specifies the terms, conditions, and obligations
under which rights can be exercised; it is similar in concept to a condition in ODRL.

License

The central XrML construct is a license. A license is conceptually a container of grants,
each of which conveys to a particular principal the sanction to exercise some identified
right against some identified resource, and possibly subject to the need for some condi-
tion to first be fulfilled.

The following figure illustrates these entities and their relationships within the XrML
data model:

Figure 5.11 XrML Concepts and Relationships

Source: ContentGuard

XrML and Web Services

The OASIS WS-Security TC is in the process of completing an XrML profile that de-
scribes the carrying of XrML tokens in a WS-Security header.

5.6.3.3 Assessment

Table 5.11 Assessment of XrML

Analysis of Web Services Standards

69

Category Information Rating
Specification phase OASIS Draft LOW

Open standard YES HIGH
Potential to become open stan-

dard
 N/A

Rate of advancement Publication date: May 2002 LOW
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations None LOW

5.6.3.4 Implementations

While no current vendor implementations of XrML focusing on use in conjunction with
Web Services have been identified, the following companies have publicly announced
their active support and agreement to build products and/or services which are XrML
compliant: Microsoft, OverDrive, Zinio Systems, DMDsecure, Integrated Management
Concepts and Content Works.

5.6.3.5 Recommendation

Level 3: Questionable

The main reasons for this recommendation level are the slow rate of advancement of the
XrML specification within OASIS, and the fact that (as with ODRL) the XrML function-
ality most applicable to Web Services can be carried out by other more advanced open
standards (e.g. OASIS XACML). We therefore believe that this specification may shift to
“Level 4: Do Not Use” within the next year.

5.6.4 Web Services Policy Framework (WS-Policy)

The Web Services Policy Framework (WS-Policy) is part of the Global XML Web Ser-
vices Architecture (GXA). The latest version was released in May 2003 by Microsoft,
IBM, Verisign, BEA Systems, and SAP. WS-Policy provides a general-purpose model
for describing and communicating the policies of a Web Service.

5.6.4.1 Specification and Status

This section references the following specifications:

• WS-Policy Version 1.1 (May 2003)
• WS-PolicyAssertions Version 1.1 (May 2003)
• WS-PolicyAttachment Version 1.1 (May 2003)
• WS-SecurityPolicy Version 1.0 (December 2002)

Analysis of Web Services Standards

70

5.6.4.2 Main Concepts

Policy Assertions

WS-Policy defines a policy to be a collection of one or more policy assertions. A policy
assertion conveys a requirement, preference, or capability of a given policy subject. Some
policy assertions specify traditional requirements and capabilities that will ultimately
manifest on the wire (e.g., authentication scheme, transport protocol selection), while
some specify requirements and capabilities that have no wire manifestation yet are criti-
cal to proper service selection and usage (e.g., privacy policy, QoS characteristics).

Policy Expressions

A policy expression is an XML representation of a policy. The following example illus-
trates a policy expression that uses "SecurityToken" assertions to specify the security to-
ken types required/accepted by a Web Service:

[01] <wsp:Policy>
[02] <wsp:ExactlyOne>
[03] <wsse:SecurityToken TokenType="wsse:X509v3"
[04] wsp:Usage="wsp:Required" wsp:Preference="50"/>
[05] <wsse:SecurityToken TokenType="wsse:Kerberosv5TGT"
[06] wsp:Usage="wsp:Required" wsp:Preference="10"/>
[07] </wsp:ExactlyOne>
[08] </wsp:Policy>

The above policy states that the Web Service with which the policy is associated can ac-
cept either [line 02] X.509 certificates [lines 03-04] or Kerberos tickets [lines 05-06] for
authentication. Additionally, the "preference" [lines 04 and 06] is that an X.509 certifi-
cate is used for authentication, due to its higher "Preference" value of 50 [line 04].

Related Specifications

There are several other policy-related GXA specifications; several of these are used in
conjunction with WS-Policy. These are:

• WS-PolicyAssertions: Describes general messaging-related policy assertions
such as character encodings (i.e. the character encodings supported by a Web Ser-
vice), spoken languages (i.e. the spoken languages supported by a Web Service),
and specification versions (i.e. which versions of a specification a Web Service
supports)

• WS-PolicyAttachment: Specifies various attachment mechanisms for using pol-
icy expressions with existing Web Services technologies, such as how to associate
policy expressions with WSDL type definitions and UDDI entities

• WS-SecurityPolicy: Defines how to describe policies related to various features
defined WS-Security, such as accepted security token types, or what portions of a
message must be signed or encrypted

WS-Policy and XACML

Although WS-Policy and XACML overlap in some areas of functionality, there are actu-
ally large inherent differences between the two specifications. WS-Policy is a more gen-
eral language that can be used to describe properties and capabilities of many different

Analysis of Web Services Standards

71

types of resources, including Web Services and Web Services endpoints, while XACML
is specifically an access control rule language. Although XACML can be used to specify
some of the non-access-control of policies that WS-Policy specifies, it is not inherently
meant to do so. Additionally, WS-Policy is not intended to be interpreted (in the sense of
programming language execution) but rather to be processed as data from which useful
information can be extracted. The principal usage of XACML, however, is to be con-
sumed by an XACML rule evaluation engine at an access control decision point for mak-
ing access control decisions.

5.6.4.3 Assessment

Table 5.12 Assessment of WS-Policy

Category Information Rating
Specification phase Initial public draft release (all) LOW

Open standard NO LOW
Potential to become open

standard
 MEDIUM

Rate of advancement • WS-Policy Version 1.1 publica-
tion date: May 2003

• WS-PolicyAssertions Version
1.1 publication date: May 2003

• WS-PolicyAttachment Version
1.1 publication date: May 2003

• WS-SecurityPolicy Version 1.0
publication date: December
2002

HIGH

Potential impact on Web Ser-
vices

 HIGH

Maturity level of consortium N/A
Number of implementations None LOW

5.6.4.4 Implementations

None.

5.6.4.5 Recommendation

Level 3: Questionable

Although we believe that WS-Policy can have a high impact on Web Services, it is not
being developed within an open standards consortium. However, The authors of WS-
Policy have publicly announced intentions to submit the specification to a standards con-
sortium. If the WS-Policy specification is ever transferred to an open standards consor-
tium, it may then be considered as “Level 2: Emerging”.

Analysis of Web Services Standards

72

5.7 General Recommendations

A large number of open standards (and potential open standards) are currently emerging
in the realm of security. We foresee the current lack of overall robust security for Web
Services improving greatly in the next two years, as many of the specifications discussed
in this section mature and others arise. The current lack of overall robust security makes
it difficult to execute Web Services scenarios that stretch beyond “point-to-point” interac-
tions; we therefore recommend that DISA utilize Web Services at this time, but in point-
to-point interactions using established mechanisms such as traditional Public Key Infra-
structure (PKI) and Secure Socket Layer/Transport Layer Security (SSL/TLS).

The following is a summary of the recommendations given in this section:

• We believe that WS-Security will have the largest single impact on the advance-
ment of Web Services of any of the specifications discussed in this section. If
WS-Security becomes an OASIS standard and more implementations emerge, it
current Level 2 status may then be considered for upgrade to “Level 1: Suitable
For Use”

• We recommend that OASIS SAML be used at this time, as it has gained wide ac-
ceptance in many different industries and settings. We foresee the number of
SAML implementations growing steadily in the medium- and long-term future.

• We view the Liberty Alliance as a relatively immature consortium (2 years old).
Once the Liberty Alliance consortium becomes more mature, its current Level 2
status may then be considered for upgrade to “Level 1: Suitable For Use”.

• We believe that the various GXA specifications discussed in this section can have
a high impact on Web Services. However, with the exception of WS-Security,
none of the GXA specifications have been advanced into open standards consorti-
ums. If this occurs, the current Level 3 status for each GXA specification may
then be considered for upgrade to “Level 2: Emerging”.

• We believe that the functionality that XACML provides (access control for Web
Services) is greatly needed, and we foresee the specification as having a very high
impact on the advancement of Web Services. However, the current lack of im-
plementations leads XACML to be evaluated here as “Level 2: Emerging”.

• We do not foresee the emerging Digital Rights Management (DRM) specifica-
tions as being highly valuable to Web Services at this time.

5.8 References

WS-Security: SOAP Message Security:
http://www.oasis-open.org/committees/download.php/3281/WSS-
SOAPMessageSecurity-17-082703-merged.pdf

WS-Security: Username Token Profile:
http://www.oasis-open.org/committees/download.php/3154/WSS-Username-04-081103-
merged.pdf

Analysis of Web Services Standards

73

WS-Security: X.509 Token Profile:
http://www.oasis-open.org/committees/download.php/3214/WSS-
X509%20draft%2010.pdf

Joseph M. Chiusano, “Web Services Security and More: The Global XML Web Services
Architecture (GXA)”, Developer.com, March 2003
Joseph M. Chiusano, “Web Services Security and More Part 2: The Global XML Web
Services Architecture (GXA)”, Developer.com, May 2003

OASIS SAML Version 1.1:
http://www.oasis-open.org/committees/download.php/2949/sstc-saml-1.1-cs-03-pdf-
xsd.zip

Seshardri Gokul, “Authenticating Web Services with SAML”, informIT.com, August
2002

Liberty Alliance Architecture Overview Version 1.1:
http://www.projectliberty.org/specs/archive/v1_1/liberty-architecture-overview-v1.1.pdf

Liberty Identity Web Services Framework (ID-WSF) Overview Version 1.2-06:
http://www.projectliberty.org/specs/draft- lib-arch- idwsf-overview-v1.2-06.pdf

WS-Federation Version 1.0:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-federation.asp

OASIS XML Common Biometric Format (XCBF) Version 1.1:
http://www.oasis-open.org/apps/org/workgroup/xcbf/download.php/3353/oasis-200305-
xcbf-specification-1.1.doc

WS-Security XCBF Token Profile:
http://www.oasis-open.org/committees/wss/documents/WSS-XCBF.doc

WS-SecureConversation Version 1.0:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-secureconversation.asp

WS-Trust Version 1.0:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-trust.asp

OASIS XACML Version 1.0:
http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf

OASIS XACML Profile for Web Services:
http://www.oasis-open.org/committees/download.php/3661/draft-xacml-wspl-04.pdf

W3C Open Digital Rights Language (ODRL) Version 1.1:
http://www.w3.org/TR/odrl/

Extensible Rights Markup Language (XrML) Version 2.1 Technical Overview:
http://xml.coverpages.org/XrMLTechnicalOverview21-DRAFT.pdf

WS-Policy Version 1.1:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
policy.asp

Analysis of Web Services Standards

74

WS-PolicyAssertions Version 1.1:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
policyassertions.asp

WS-PolicyAttachment Version 1.1:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
policyattachment.asp

WS-SecurityPolicy Version 1.0:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
securitypolicy.asp

Secure, Reliable, Transacted Web Services: Architecture and Composition:
http://msdn.microsoft.com/webservices/understanding/advancedwebservices/default.aspx
?pull=/library/en-us/dnwebsrv/html/wsoverview.asp

Microsoft Passport and the Future of Authentication:
http://www.technewsworld.com/perl/story/31667.html

Analysis of Web Services Standards

75

6 Interoperability of Web Services

Interoperability is one of the pillars on which Web Services are built. The goal is to al-
low different Web Services to be able to work together seamlessly. A system is going to
search for a particular Web Service and choose between different implementations to lev-
erage. This is the reason behind the vast number of specifications, to achieve this level of
interoperability.

One concern is that due to the number of standards organizations and the number of
specifications being submitted, some specifications may contain contradictions or ambi-
guities that make interoperability between two specifications difficult. Another concern
is that a specification can contain loosely defined requirements, optional features, or am-
biguities that could cause interoperability issues between two implementations of the
given specification.

The Web Services Interoperability Organization (WS-I) (http://www.ws- i.org) was
formed to address these concerns. Currently over 170 organizations have joined WS-I.
WS-I is not a standards body trying to produce new specifications, but instead seeks to
clarify how current Web Services specifications should be used.

6.1 Specification and Status

WS-I Basic Profile Version 1.0a, Final Specification, August 2003

http://www.ws-i.org/Profiles/Basic/2003-08/BasicProfile-1.0a.htm

6.2 Main Concepts

WS-I provides Web Service Profiles that indicate a set of specifications that can be
adopted together in a single application. The profile addresses ambiguities in the specifi-
cations to prevent interoperability issues between different implementations. It dictates
strong requirements stating that specifications “MUST” or “MUST NOT” have certain
details. The profile does not contain optional or loosely defined requirements to avoid
discrepancies between implementations. Profiles define testable statements that allow
messages to be examined to determine if the implementation is conforming to the stated
profile. This is an unobtrusive way of testing with concrete messages instead of having
to deal directly with the implementation.

WS-I released the Basic Profile 1.0 (WSBasic) in August 2003. This profile addresses
XML Schema 1.0, SOAP 1.1, WSDL 1.1 and UDDI 2.0 specifications. The Basic Profile
is the platform for other profiles to be built on. The specifications included in the basic
profile are the four basic core components of most Web Services. These specifications
are widely supported and are being implemented by vendors now. These specifications
are covered in more detail in Section 2 of this document. Vendors can modify their im-
plementations to follow the guidelines and requirements specified in the Basic Profile.
This increases the interoperability of those Web Services.

The WSBasic profile provides concrete rules that define profile compliance. The profile
addresses each specification included and clarifies ambiguities or loosely defined re-
quirements. An example of this is taken from section 4.1 of the WSBasic profile:

Analysis of Web Services Standards

76

R1000 When a MESSAGE contains a soap:Fault element, that element
MUST NOT have element children other than faultcode, faultstring,
faultactor and detail.

There is restricting the content of the soap:Fault element to elements explicitly described
in the SOAP 1.1 specification. This restric tion reduced possible interoperability prob-
lems related to the interpretation of the specification. The profile provides examples
(XML Messages, WSDL snippets, etc) that clearly indicate the incorrect and correct im-
plementations.

The second profile being developed is the Basic Security Profile. This profile is being
created by the WS-I Basic Security Profile Working Group. It builds on the WSBasic
profile. The focus is on interoperability issues involving security technologies in the fo l-
lowing areas:

• Identification and authentication
• Message integrity and message authentication
• Message confidentiality
• Non-repudiation

The Basic Security Profile is based on the following specifications:

• HTTP over TLS (“HTTPS”)
• SOAP attachment security (S/MIME V3 and Cryptographic Message Syntax)
• OASIS Web Services Security V1.0

6.3 Recommendation

Level 2: Emerging

WS-I is attempting exactly what is needed with Web Services. It is not attempting to de-
fine new standards, but pick a collection of standards and indicate how they should be
used. It goes a step further to provide a test platform to verify that implementations are
complying with the standards. The composition of WS-I includes all the required players
and the market share needed achieve its stated goals of interoperable Web Services

There are some concerns with WS-I. The initial founders (IBM and Microsoft) did not
allow Sun Microsystems into the organization initially. Sun is now a member and modi-
fied its Java Web Services Developer Pack (JWSDP) to be WSBasic compliant. There
are concerns about the WS-I ability to choose between competing specifications coming
out of W3C and Oasis.

Interoperability is a requirement for Web Services. The WS-I is the leading candidate for
defining how to achieve interoperability. The reason this is level 2 and is that the testing
tools for determining WSBasic profile compliance are not published yet, so no one can
claim to be implementing any of the profiles yet. Vendors are working on implementing
the WSBasic profile, but there are currently no complete implementations yet.

Analysis of Web Services Standards

77

7 Web Services Choreography and Coordination

This section focuses on the concepts of Web Services choreography and coordination.
According to the W3C Web Services Choreography initiative: “It has become clear that
taking the next step in the development of Web Services will require the ability to com-
pose and describe the relationships between lower- level services. Although differing ter-
minology is used in the industry, such as orchestration, collaboration, coordination, con-
versations, etc., the terms all share a common characteristic of describing linkages and
usage patterns between Web Services.”

The specifications described in this section all contain choreography and coordination
capabilities at some level. This section references the following specifications:

• Web Service Choreography Interface (WSCI), an early submission to the W3C
Choreography Working Group

• OASIS Web Services Business Process Execution Language (WS BPEL)
• WS-Transaction/WS-Coordination
• OASIS Web Services Composite Application Framework (WS-CAF)

We begin with a description of the W3C Choreography initiative.

7.1 W3C Web Services Choreography

The W3C Web Services Choreography Working Group was initiated in January 2003 as
part of the W3C Web Services Activity. The primary goal of the W3C Web Services
Choreography Working Group is to create a common interface and composition language
to help address choreography. The Working Group believes that Web Service choreogra-
phy capabilities are a Critical Success Factor in support of several different top- level
goals for the nascent W3C Web Services Architecture.

The Web Services Choreography Working Group published an initial Working Draft of
requirements in August 2003. The Working Group is continuing to refine these require-
ments, and an updated version of this document is anticipated in the upcoming months.

7.1.1 Web Services Choreography Concepts

The description of interactions among Web Services - especially with regard to the ex-
change of messages, their composition, and the sequences in which they are transmitted
and received - is an especially important problem. These interactions may take place
among groups of services which, in turn, make up a larger, composite service, or which
interact across organizational boundaries in order to obtain and process information. The
problems of Web Services choreography are largely focused around message exchange
and sequencing these messages in time to the appropriate destinations.

In order to fulfill the needs of the Web Services community, these aspects of Web Ser-
vices must be developed and standardized in an interoperable manner, taking into account
the needs of each individual service as well as those of its collaborators and users. Web
Services choreography concerns the interactions of services with their users. These users
may be other Web Services, applications or human beings.

Analysis of Web Services Standards

78

7.1.2 W3C Web Services Choreography Interface (WSCI)

The Web Service Choreography Interface (WSCI) is an XML-based interface description
language that describes the flow of messages exchanged by a Web Service participating
in choreographed interactions with other services. It was submitted to W3C in August
2002 by Sun Microsystems, Intalio, SAP, and BEA Systems.

7.1.2.1 Specification and Status

This section references the following specification:

• WSCI Version 1.0 (W3C Note, August 2002)

7.1.2.2 Main Concepts

Dynamic Interfaces

The Web Service Choreography Interface (WSCI) is an XML-based interface description
language that describes the flow of messages exchanged by a Web Service participating
in choreographed interactions with other services. While mechanisms such as WSDL
describe the static interfaces of a Web Service, WSCI describes the dynamic interface of
the Web Service participating in a given message exchange by means of reusing the
operations defined for a static interface. WSCI works in conjunction with the Web
Service Description Language (WSDL); it can also work with another service definition
language that exhibits the same characteristics as WSDL.

It is important to note that WSCI does not address the definition and the implementation
of the internal processes that actually drive a message exchange. Rather, the goal of
WSCI is to describe the observable behavior of a Web Service by describing the interface
between an implementation and the message exchange (collaboration) in which it
participates. This is illustrated in the following figure:

Figure 7.1 WSCI Interfaces and Collaboration

Source: WSCI Version 1.0 Specification

Analysis of Web Services Standards

79

Web Services “Stack” – Where WSCI Fits

A "stack" of layered standards is emerging that aims to ensure semantic and technical
interoperability of Web Services. This stack, developed by the W3C, is still in its early
stages. Several additional layers are needed in order to enable true Web Service
collaborations. Other standards are, in parallel, building semantics and interoperability
for business processes and collaborations in a top-down approach. It is anticipated that
these two stacks will meet in the middle.

WSCI works on top of the current Web Service stack and below layers in the emerging
Web Service architectural model that may be thought of as process or collaboration
modeling layers. This is illustrated in the following figure:

Figure 7.2 WSCI Placement in the Web Services “Stack”

Source: WSCI Version 1.0 Specification

It is important to note that WSCI is not a "workflow description language"; it is
envisaged that this role will be covered by some other specification that would properly
address the description of collaborative processes. However, WSCI can describe the
observable behavior of a Web Service interacting with a workflow; as well, it can
describe the observable behavior of a system that implements a workflow (or which
behaves as such).

Key Choreography Characteristics

The following are some of the key choreography characteristics that WSCI supports:

• Message choreography: A WSCI interface describes the order in which
messages can be sent or received in a given message exchange, the rules which
govern such ordering, and the boundaries of a message exchange (when it starts
and when it ends)

• Transaction boundaries and compensation: A WSCI interface describes which
operations have transactional (“all or nothing”) capabilities

Analysis of Web Services Standards

80

• Thread management: A WSCI interface describes if and how a Web Service is
capable of managing multiple conversations (based on the same message
exchange) with the same partner or with different partners

• Connectors: A WSCI interface describes how the operations performed by
different Web Services acting in the same message exchange actually link
together

• Operational context: A WSCI interface describes how the same Web Service
behaves in the context of different message exchanges

• Dynamic participation: A WSCI interface describes how the identity of the
target service is dynamically selected

7.1.2.3 Assessment

Due to the fact that it is not clear that the WSCI specification will be formally accepted
by the W3C Web Services Choreography Working Group, we will not provide an as-
sessment of the WSCI specification. Additionally, since the Working Group has not yet
produced a specification, we will not reference any specification in particular. We will
instead assess the Working Group itself, and will refer to the W3C Web Services Chore-
ography Requirements specification Version 1.0, as this is the only existing specification
that the Working Group has produced to this date.

Table 7.1 Assessment of WSCI

Category Information Rating
Specification phase W3C Working Draft LOW

Open standard YES HIGH
Potential to become open stan-

dard
 N/A

Rate of advancement Publication date: August 2003 HIGH
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 9 years HIGH
Number of implementations N/A

7.1.2.4 Implementations

N/A

7.1.2.5 Recommendation

Level 2: Emerging

We believe that the work of the W3C Web Services Choreography Working Group is
highly important and bears close watching. At this point, the Working Group is still re-
ceiving submissions – so it is unclear as to whether the Working Group will adopt WSCI,
whether in whole or in part. We foresee the work of this Working Group as having a very
high impact on the advancement of Web Services.

Analysis of Web Services Standards

81

7.1.3 OASIS Web Services Business Process Execution Language (WS BPEL)

The OASIS Web Services Business Process Execution Language (WS BPEL) TC was
formed in April 2003 to continue the development of the Business Process Execution
Language for Web Services (BPEL4WS) specification. The original BPEL4WS specifi-
cation was authored by IBM, Microsoft, BEA Systems, SAP, and Siebel Systems.

BPEL4WS provides a language for the formal specification of business process behavior
based exclusively on Web Services.

7.1.3.1 Specification and Status

This section references the following specification:

• Business Process Execution Language for Web Services (BPEL4WS) Version 1.1
(May 2003)

7.1.3.2 Main Concepts

Business Processes

A BPEL4WS process is a reusable definition that can be deployed in different ways and
in different scenarios, while maintaining a uniform application- level behavior across all
of them. The following is a simple example of a BPEL4WS process for handling a pur-
chase order:

Figure 7.3 Example of BPEL4WS Process

Source: BPEL Version 1.1 Specification

This scenario exemplifies the complex degree to which BPEL4WS can model business
processes. On receiving the purchase order from a customer (top), the process initiates
three tasks concurrently: calculating the final price for the order (left), selecting a shipper
(middle), and scheduling the production and shipment for the order (right). While some
of the processing can proceed concurrently, there are control and data dependencies be-
tween the three tasks. In particular, the shipping price is required to finalize the price cal-

Analysis of Web Services Standards

82

culation (arrow from “Decide on Shipper” to “Complete Prices Calculation”), and the
shipping date is required for the complete fulfillment schedule (arrow from “Arrange Lo-
gistics” to “Complete Production Scheduling”). When the three tasks are completed, in-
voice processing can proceed and the invoice is sent to the customer (bottom).

Partner Links

The interaction with each partner in the business process above occurs through Web Ser-
vice interfaces, and the structure of the relationship at the interface level is encapsulated
in what is called a partner link. A partner link is used to directly model peer-to-peer con-
versational partner relationships. Partner links define the shape of a relationship with a
partner by defining the message and port types (from a WSDL definition) used in the in-
teractions in both directions. Partner links also define roles – for example, the roles of
“buyer” and “seller” would be applicable to the above scenario.

Transactions and Compensation

BPEL4WS includes transactional capabilities for business processes, through its defini-
tion of two types of transactions:

• Long-Running Transactions (LRTs): Transactions that span long durations and
for which compensation activities may be required if reversal of the transaction is
necessary

• ACID (Atomicity/Consistency/Isolation/Durability) transactions: Also known
as atomic transactions, ACID transactions are limited to local updates because of
trust issues and because locks and isolation cannot be maintained for long periods

A compensation activity is an activity associated with a Long Running Transaction that
effectively “undoes” the activity of the LRT through a cancellation-type operation. For
example, a compensation activity for a purchase order activity would result in the status
of the pertinent purchase order being changed to “Cancelled”. This differs from an ACID
transaction that may involve the transfer of funds from one bank account to another, in
which case it is crucial that the transaction as a whole either succeeds or fails completely.

The BPEL4WS specification does not explicitly define the mechanisms for transactional
activity, but instead defers to the WS-Transaction specification (discussed later in this
section) for this functionality. It is unclear at this time whether or not the WS BPEL
specification that emerges from the OASIS activity will maintain this deference, or defer
to another specification such WS-CAF (also discussed later in this section).

BPEL4WS and WSCI

Although BPEL4WS and WSCI are sometimes considered as competing specifications,
they actually are quite different from each other. While WSCI describes the observable
behavior

of a Web Service through description of its interfaces (i.e. its perspective is from the
point of view of the Web Service itself), BPEL4WS describes the behavior of a business
process based on interactions between the process and its partners. That is, BPEL4WS is
actually at a "higher point" in the emerging Web Services stack than WSCI – it is at the
“process or collaboration modeling” layer described in the previous WSCI section. At the

Analysis of Web Services Standards

83

core of the BPEL4WS process model is the peer-to-peer interaction between Web Ser-
vices interfaces defined in WSDL.

Additionally, while WSCI defines all choreography aspects within the context of individ-
ual Web Services only and simply connects the interfaces at the global model (process)
level, BPEL4WS defines the choreography aspects (e.g. flow of control) at the process
level that involves two or more Web Service interfaces. This process level choreography
defines which parts of the process execute in parallel, which execute in sequence, cond i-
tional flow of control at different parts in the process, exceptions and compensations etc.

Future Releases

The OASIS WS BPEL TC is expecting to release an initial "Editor's Version" of the up-
dated specification in December 2003, with an approved version released in February or
March 2004.

7.1.3.3 Assessment

Table 7.2 Assessment of WS BPEL

Category Information Rating
Specification phase OASIS specification in process LOW

Open standard YES HIGH
Potential to become open stan-

dard
 N/A

Rate of advancement Publication date: May 2003 HIGH
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations 2 LOW

7.1.3.4 Implementations

• Collaxa:
http://msdn.microsoft.com/webservices/building/wse/default.aspxhttp://www.coll
axa.com/product.bpel11.html

• OpenStorm ChoreoServer: http://www.openstorm.com/overview.shtml

7.1.3.5 Recommendation

Level 2: Emerging

We believe that the emerging WS BPEL work is highly important and bears close watch-
ing, and we foresee the specification as having a very high impact on the advancement of
Web Services, particularly in the area of cross-organization/cross-agency business proc-
ess interactions.

Analysis of Web Services Standards

84

7.1.4 Web Services Transaction (WS-Transaction)/ Web Services Coordination
(WS-Coordination)

The WS-Transaction and WS-Coordination specifications are part of the Global XML
Web Services Architecture (GXA). They are discussed together here because of their
close dependencies. Both specifications were authored by Microsoft, IBM, and BEA Sys-
tems.

WS-Transaction/WS-Coordination together specify the transactional properties of Web
Services (WS-Transaction) and the coordination (WS-Coordination) between Web Ser-
vices, to include the context within which Web Services interact.

7.1.4.1 Specification and Status

This section references the following specifications:

• WS-Transaction Version 1.0 (August 2002)

• WS-Coordination Version 1.0 (August 2002)

7.1.4.2 Main Concepts

Coordination Types

WS-Transaction defines two coordination types that essentially characterize transactions
as either "fine-grained" or "course-grained" transactions. Atomic transactions are “all or
nothing” transactions that are used to coordinate activities having a short duration and
executed within limited trust domains; they are more "fine-grained" in nature. In contrast,
business activities are used to coordinate activities that are long in duration and that may
apply business logic to handle business exceptions; they are more "coarse-grained" in na-
ture. Because of the long duration of business activities, data resources cannot be locked
as with atomic transactions—rather, actions are applied immediately and are permanent.
A Web Services application can include both atomic transactions and business activities.

Coordination Process

Each activity in a transaction is coordinated by a coordination service. Each participant in
an activity registers with the coordination service for that activity through a registration
service. In order to link the various activities participating in a transaction, messages be-
tween parties carry a coordination context.

The following example illustrates a coordination context supporting a transaction service:
[01] <S:Header>
[02] . . .
[03] <wscoor:CoordinationContext>
[04] <wsu:Identifier>http://abc.com</wsu:Identifier>
[05] <wsu:Expires>2002-08-31T13:20:00-05:00</wsu:Expires>
[06] <wscoor:CoordinationType>
[07] http://schemas.xmlsoap.org/ws/2002/08/wstx
[08] </wscoor:CoordinationType>
[09] <wscoor:RegistrationService>
[10] <wsu:Address>
[11] http://xyzregistrationservice.com
[12] </wsu:Address>
[13] </wscoor:RegistrationService>
[14] </wscoor:CoordinationContext>

Analysis of Web Services Standards

85

[15] . . .
[16] </S:Header>

In the above example, an atomic transaction is indicated through the value specified by
WS-Transaction that denotes an atomic transaction [line 07]. The URI of the registration
service with which all Web Services wishing to participate in the transaction register is
also specified [line 11].

The WS-Transaction specification is to be split into two specifications, each concentrat-
ing on a single transaction type. Atomic transactions are described in a specification
known as “WS-AtomicTransaction”, which was released in September 2003. Business
activities are described in a specification known as “WS-BusinessActivity”, whose re-
lease is forthcoming.

7.1.4.3 Assessment

Table 7.3 Assessment of WS-Transaction/WS-Coordination

Category Information Rating
Specification phase Initial public draft release LOW

Open standard NO LOW
Potential to become open

standard
 MEDIUM

Rate of advancement Publication date: August 2002 LOW
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium N/A
Number of implementations None LOW

7.1.4.4 Implementations

None.

7.1.4.5 Recommendation

Level 3: Questionable

Although we believe that WS-Transaction and WS-Coordination can have a high impact
on Web Services, they are not being developed within an open standards consortium. We
believe that the capabilities that they specify (the ability to define transactional aspects of
Web Services and to coordinate activities among multiple Web Services) are critical for
the advancement of Web Services. If these specifications are ever transferred to an open
standards consortium, they may be considered as “Level 2: Emerging”.

7.1.5 OASIS Web Services Composite Application Framework (WS-CAF)

The Web Services Composite Application Framework (WS-CAF) is a collection of speci-
fications that propose interoperable mechanisms for managing shared context between
multiple Web Services acting in combination, and ensuring that business processes
achieve predictable results and recovery from failure. The WS-CAF specifications com-

Analysis of Web Services Standards

86

plement other Web Services specifications in the areas of security, reliable messaging,
choreography, and transactions.

The areas covered by WS-CAF are similar to those covered by WS-Transaction and WS-
Coordination. The specifications are authored by Arjuna Technologies Limited, Fujitsu
Software, IONA Technologies PLC, Oracle Corp and Sun Microsystems. A new OASIS
TC was formed in September 2003 to continue the development of the WS-CAF specifi-
cations.

7.1.5.1 Specification and Status

This section references the following specifications:

• Web Services Context (WS-CTX) Version 1.0 (July 2003)

• Web Services Coordination Framework (WS-CF) Version 1.0 (July 2003)

• Web Services Transaction Management (WS-TXM) Version 1.0 (July 2003)

7.1.5.2 Main Concepts

The Specification Areas

The following is a brief description of each of the three specifications that comprise WS-
CAF.

• Web Service Context (WS-CTX): A lightweight framework for simple context
management. Ensures that all Web Services participating in a composite applica-
tion share a common context and can exchange information about a common out-
come.

• Web Service Coordination Framework (WS-CF): A sharable mechanism to
manage context augmentation and lifecycle, and guarantee message delivery. De-
fines a coordinator that provides additional features for persisting context opera-
tions and guaranteeing the notification of outcome messages to the participants.

• Web Services Transaction Management (WS-TXM): Comprises three distinct
protocols for interoperability across multiple transaction managers and supporting
multiple transaction models (two phase commit, long running actions, and bus i-
ness process flows). While WS-CF is responsible only for notifying the partici-
pants of the outcome, WS-TXM defines a protocol for the participants to coordi-
nate outcomes with each other and make a common decision about how to be-
have, especially in the case of failure.

WS-CAF specifications are categorized into multiple domains, as shown in the following
figure:

Analysis of Web Services Standards

87

Figure 7.4 WS-CAF Specifications by Domain

Source: WS-CAF Primer

As shown in the above figure, WS-CAF concepts are based on the assumption that multi-
ple Web Services are often placed into various relationships to accomplish a common
purpose and therefore at a minimum need a way to share common context (the Activity
Domain), and at a maximum need a way to coordinate results (the Coordination Domain)
into a single, potentially long-running larger unit of work with predictable results despite
failure conditions (the Transaction Domain).

WS-CAF and Other Specifications

The WS-CAF specifications overlap in high- level mission with other specifications such
as WS-Transaction and WS-Coordination. WS-CAF states that it “can use any transaction
protocol in place of or in addition to the neutral protocols defined in WS-TXM”, although
it remains to be seen how seamless the interoperability between WS-CAF and other
transaction protocols might be.

It is also conceivable that BPEL4WS could utilize WS-CAF for its transaction and coor-
dination requirements, although there has been no stated intention to do so.

7.1.5.3 Assessment

Table 7.4 Assessment of WS-CAF

Category Information Rating

Analysis of Web Services Standards

88

Category Information Rating
Specification phase OASIS specification in process LOW

Open standard YES HIGH
Potential to become open stan-

dard
 N/A

Rate of advancement Publication date: July 2003 HIGH
Potentia l impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations None LOW

7.1.5.4 Implementations

None.

7.1.5.5 Recommendation

Level 2: Emerging

We believe that the emerging WS-CAF work is highly important and bears close watch-
ing, and we foresee the specification as having a very high impact on the advancement of
Web Services, particularly with the ability to define transactional aspects of Web Ser-
vices and to coordinate activities among multiple Web Services.

7.2 General Recommendations

The area of choreography and coordination is a relatively new and much-anticipated area
for Web Services. We believe that advancements in this area will advance Web Services
to new heights that will enable inter-organization and inter-agency collaborations.

The following is a summary of the recommendations given in this section:

• We believe that the work of the W3C Web Services Choreography Working
Group is highly important and bears close watching. At this point, the Working
Group is still receiving submissions – so it is unclear as to whether the Working
Group will adopt WSCI, whether in whole or in part.

• We believe that the emerging WS BPEL work is highly important and bears close
watching, and we foresee the specification as having a very high impact on the
advancement of Web Services, particularly in the area of cross-
organization/cross-agency business process interactions.

• Although we believe that WS-Transaction and WS-Coordination can have a high
impact on Web Services, they are not being developed within an open standards
consortium. If this occurs, their current Level 3 status may then be considered for
upgrade to “Level 2: Emerging”.

• We believe that the emerging WS-CAF work is highly important and bears close
watching, and we foresee the specification as having a very high impact on the
advancement of Web Services, particularly with the ability to define transactional

Analysis of Web Services Standards

89

aspects of Web Services and to coordinate activities among multiple Web Ser-
vices.

7.3 References

W3C Web Services Choreography Working Group:
http://www.w3.org/2002/ws/chor/

W3C Web Services Choreography Requirements Version1.0:
 http://www.w3.org/TR/2003/WD-ws-chor-reqs-20030812/

WSCI Version 1.0:
http://www.w3.org/TR/wsci/

Business Process Execution Language for Web Services (BPEL4WS) Version 1.1:
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

Joseph M. Chiusano, “Web Services Security and More: The Global XML Web Services
Architecture (GXA)”, Developer.com, March 2003

Prasad Yendluri, “Web Services Choreography”, WebServices.org, September 2003

WS-Transaction Version 1.0:
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transaction.asp

WS-Coordination Version 1.0:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnglobspec/html/ws-
coordination.asp

WS-CAF Primer:
http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf

Web Services Context (WS-CTX) Version 1.0:
http://developers.sun.com/techtopics/webservices/wscaf/wsctx.pdf

Web Services Coordination Framework (WS-CF) Version 1.0:
http://developers.sun.com/techtopics/webservices/wscaf/wscf.pdf

Web Services Transaction Management (WS-TXM) Version 1.0:
http://developers.sun.com/techtopics/webservices/wscaf/wstxm.pdf

Analysis of Web Services Standards

90

8 Web Services and Discovery

This section focuses on the automatic discovery of Web Services. In an earlier section,
we discussed the concept a service-oriented architecture (SOA), and the “pub-
lish/find/bind” process. In this section we examine the mechanisms behind this process –
registries that store and maintain Web Services descriptions.

We examine the two most prominent e-business registry specifications today: Universal
Description, Discovery, and Integration (UDDI) and ebXML Registry, and we discuss
how ebXML Registry provides functionality beyond that of UDDI to encompass the col-
laboration phase of e-business. We also provide a high- level comparison between the two
registry types.

8.1 Universal Description, Discovery, and Integration (UDDI)

The UDDI project began in October 2000 as a collaboration between Microsoft, Ariba,
and IBM. Its main goal was to speed interoperability and adoption for Web Services
through the creation of standards-based specifications for service description and discov-
ery, and the shared operation of a business registry on the Web. Before the UDDI project,
there was no industry-wide, accepted approach for businesses to reach their customers
and partners with information about their products and Web Services. UDDI enables en-
terprises to quickly and dynamically discover and invoke Web Services, both internally
(to the enterprise) and externally.

The initial idea behind UDDI was that software companies, standards bodies, and pro-
grammers would populate the public "UDDI Business Registry" with descriptions of dif-
ferent types of services, while businesses would populate the registry with descriptions of
the services they support. Marketplaces, search engines, and business applications would
then query the registry to discover services at each others' companies. Businesses would
also use this data to facilitate easier integration with each other over the Web. UDDI may
also be employed as a "private" registry (i.e. behind a firewall) that is hosted by an e-
marketplace, a standards body, or a consortium of organizations that participate in a
given industry.

8.1.1 Specification and Status

This section references the following specification:

• Universal Description, Discovery, and Integration (UDDI) Version 3.0 (OASIS
TC Approved Specification, July 2002)

Originally a vendor-driven specification, UDDI was transferred into OASIS in July 2002.

8.1.2 Main Concepts

UDDI Information Model

The primary focus of the UDDI information model is business information. The UDDI
information model consists of the following four “core” data structures:

• businessEntity

Analysis of Web Services Standards

91

• businessService
• bindingTemplate
• tModel

The businessEntity data structure is “base structure” of UDDI. A businessEntity describes
a business or other organization that typically provides Web Services. It contains de-
scriptive information about the business or provider and the services it offers, such as:

• Names and descriptions in multiple languages
• Contact information
• Classification information

The businessService data structure represents a logical grouping of Web Services that a
business provides. It should be noted that at this level, there is no technical information
provided about these services - rather, this structure allows the ability to assemble a set of
services under a common rubric. An example of a businessStructure would be a set of
Purchase Order Web Services (submission, confirmation, and notification) that are pro-
vided by a business.

The structure that is used to describe the technical information about a Web Service is
known as a bindingTemplate. Each bindingTemplate structure represents an individual
Web Service, and contains either the access point for a given service, or an indirection
mechanism that will lead one to the access point.

The core structure in the UDDI information model is a tModel, or “technical model”. A
tModel describes a technical model representing a reusable concept, such as a Web Ser-
vice type, a protocol used by Web Services, or a category system. An example of a
tModel would be a WSDL document that describes a particular Web Service. Each dis-
tinct specification, transport, protocol, or namespace within a UDDI registry is repre-
sented by a tModel, and tModels are therefore used by multiple bindingTemplates. This
allows tModels to be used to promote interoperability between software systems. It
should be noted that a UDDI registry does not actually store the content that is denoted
by a tModel, but rather references its location.

These structures, and the relationships between them, are represented in the following
figure:

Analysis of Web Services Standards

92

Figure 8.1 UDDI Core Data Structures

Source: UDDI Version 3.0 Specification

Version 3.0 Features

The UDDI Version 3.0 specification contains features that render it quite different from
the UDDI Version 2.0 specification. Some of these features are:

• Multi-Registry Support: Previous versions of UDDI did not permit the publish-
ing of across multiple registries. This capability is now possible with Version 3.0.

• Digital Signature Support: Allows UDDI entities to be digitally signed,
thereby contributing a higher level of data integrity and authenticity

• Policies: Enables various decisions to be enforced by policies, contributing to
more consistent handling of contents

• Publish/Subscribe: A new Subscription API includes robust support for syn-
chronous or asynchronous notification of registry events to users

8.1.3 Assessment

Table 8.1 Assessment of UDDI

Category Information Rating
Specification phase OASIS TC Approved Specification MEDIUM

Open standard YES HIGH
Potential to become open

standard
 N/A

Rate of advancement Publication date: July 2002 LOW
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH

Analysis of Web Services Standards

93

Category Information Rating
Number of implementations None MEDIUM

8.1.4 Implementations

UDDI implementations fall into two categories:

• Public
• Private

The number of implementations listed above includes private (COTS) implementations.
However, there are current four public UDDI registries operated by the following organi-
zations:

• IBM
• Microsoft
• SAP
• NTT-Com

There are no known implementations that fully support UDDI Version 3.0.

8.1.5 Recommendation

Level 2: Emerging

We believe that UDDI serves a very important purpose for both DISA and the federal
government, as usage of Web Services increases, and its adoption is currently on the rise.
The mechanisms that UDDI provide for both management and discovery of Web Ser-
vices descriptions will serve to advance adoption of Web Services through increased dis-
covery capabilities. Because the UDDI Version 3.0 specification is still under develop-
ment, we recommend that DISA consider using UDDI Version 2.0 specification imple-
mentations for the time being in order to advance its Web Services efforts, and upgrade to
Version 3.0 when it becomes an OASIS standard and when an acceptable number of im-
plementations are available.

8.2 ebXML Registry

The ebXML Registry specification was created as part of the 18-month ebXML initiative
that ended in May 2001, after which time it was moved into OASIS. An ebXML Registry
provides a mechanism by which XML and non-XML artifacts (including Web Services
descriptions) can be stored, maintained, and automatically discovered, thereby increasing
efficiency in XML-related development efforts.

8.2.1 Specification and Status

This section references the following specification:

• OASIS/ebXML Registry Information Model (RIM) Version 2.5 (OASIS TC Ap-
proved Specification, June 2003)

• OASIS/ebXML Registry Services (RS) Specification Version 2.5 (OASIS TC
Approved Specification, June 2003)

Analysis of Web Services Standards

94

The OASIS/ebXML Registry TC plans to release these specifications for OASIS review
and vote in late 2003 or early 2004.

8.2.2 Main Concepts

ebXML Registry Information Model

Unlike UDDI whose primary focus is business information, the main focus of the ebXML
Registry information model is more general to encompass XML and non-XML artifacts.
Therefore, the ebXML Registry information model is more abstract in nature than that of
UDDI.

The ebXML Registry information model consists of two “core” data structures (known as
classes):

• RegistryObject
• RegistryEntry

A RegistryObject provides metadata for a stored RepositoryItem (the term used to refer to
that actual object that is stored) – such as name, object type, identifier, description, etc. A
RegistryObject can represent many different types of RepositoryItems, from XML sche-
mas, to classification schemes, to Web Service definitions.

In contract, a RegistryEntry is used to represent “catalog-type” metadata about Reposito-
ryItems – that is, metadata about the current state of a RepositoryItem in the registry (e.g.
version, status, stability). Consequently, the metadata associated with a RegistryEntry is
(in general) more “fluid” than that associated with a RegistryObject. The RegistryEntry
class inherits form the RegistryObject class.

Version 2.5 Features

As with UDDI, the OASIS/ebXML Registry Version 2.5 specifications contain features
that render them quite different from the OASIS/ebXML Registry Version 2.0 specifica-
tions. Some of these features are:

• Cooperating Registries: Similar in concept to UDDI’s multi-registry support

• Event Notification: Similar in concept to UDDI’s publish/subscribe feature

• Content Management Services: Provide content validation and cataloging capa-
bilities

• OASIS XACML Support: Allows fine-grained access control policies to be de-
fined for ebXML Registry

ebXML Registry and UDDI

ebXML Registry contains classes for representing Web Services that are generally
equivalent to the four “core” data structures of UDDI. The OASIS/ebXML Registry TC
has released a Technical Note called “Registering Web Services in an ebXML Registry”
that describes both the representation of Web Services in an ebXML Registry and the
process for registering them.

A large distinction between ebXML Registry and UDDI in addition to their primary fo-
cuses and information models is the general “phases” of e-business with which each reg-

Analysis of Web Services Standards

95

istry type is associated. There are two general ways in which an e-business registry (such
as ebXML Registry or UDDI) may be used: for discovery and for collaboration. Both
UDDI and ebXML Registry allow for discovery of businesses, their Web Services, and
the technical interfaces they make available. However, UDDI is focused exclusively on
this discovery aspect, while ebXML Registry is focused on both discovery and collabora-
tion. The primary focus of ebXML Registry extends beyond that of UDDI into collabo-
ration. Due to its focus on storing and maintaining XML artifacts, an ebXML registry can
enable both collaborative development of XML artifacts within an organization and run-
time collaboration between trading partners. For example, users can create XML artifacts
and submit them to an ebXML registry for use and potential enhancement by other users.

We believe that ebXML Registry and UDDI will co-exist and continue to be utilized in
their areas of strength – ebXML Registry for discovery and collaboration, and UDDI for
discovery. This view is further explained in the WebServices.org article titled “UDDI and
ebXML Registry: A Co-Existence Paradigm”. We also foresee greater interoperability
between the two registry types as described in the ebXML Forum article “UDDI and
ebXML Registry: A Three-Tier Vision”.

8.2.3 Assessment

Table 8.2 Assessment of ebXML Registry

Category Information Rating
Specification phase OASIS TC Approved Specification MEDIUM

Open standard YES HIGH
Potential to become open

standard
 N/A

Rate of advancement Publication date: June 2003 HIGH
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations None LOW

8.2.4 Implementations

While a number of vendor implementations of OASIS/ebXML Registry 2.0 exist, no
vendor implementations of Version 2.5 have been identified.

8.2.5 Recommendation

Level 2: Emerging

We believe that the current adoption of ebXML Registry (in general) has been very low.
We attribute this mostly to a general perception that an XML registry is not necessary, or
is a “nice to have”. As adoption of XML grows both within DISA and the federal gov-
ernment—particularly the creation of XML schemas—we foresee the need for an XML
registry such as ebXML Registry increasing.

Analysis of Web Services Standards

96

For the present time, however, we recommend that DISA hold off on adopting ebXML
Registry until the Version 2.5 specifications become OASIS standard and reach a Version
3.0 status. After that time, an assessment should be made regarding available implemen-
tations, and further consideration should be given to implementing ebXML Registry.

8.3 General Recommendations

The utilization of service-oriented architectures (SOAs) calls for efficient mechanisms by
which to discover Web Services descriptions, such as WSDL documents.

The following is a summary of the recommendations given in this section:

• We believe that UDDI serves a very important purpose for both DISA and the
federal government, as usage of Web Services increases, and its adoption is cur-
rently on the rise. Because the UDDI Version 3.0 specification is still under de-
velopment, we recommend that DISA consider using UDDI Version 2.0 specifi-
cation implementations for the time being in order to advance its Web Services
efforts, and upgrade to Version 3.0 when it becomes an OASIS standard and
when an acceptable number of implementations are available.

• We believe that the current adoption of ebXML Registry (in general) has been
very low. However, as adoption of XML grows both within DISA and the federal
government—particularly the creation of XML schemas—we foresee the need for
an XML registry such as ebXML Registry increasing. Once the OASIS/ebXML
Registry Version 2.5 specifications reach a Version 3.0 status, an assessment
should be made regarding available implementations and further consideration
should be given to implementing ebXML Registry.

• We believe that ebXML Registry and UDDI will co-exist and continue to be util-
ized in their areas of strength – ebXML Registry for discovery and collaboration,
and UDDI for discovery.

8.4 References

Joseph M. Chiusano, “UDDI and ebXML Registry: A Co-Existence Paradigm”, WebSer-
vices.org, April 2003

Joseph M. Chiusano, “UDDI and ebXML Registry: A Three-Tier Vision”, ebXML Fo-
rum, August 2003

Universal Description, Discovery, and Integration (UDDI) Version 3.0:
http://uddi.org/pubs/uddi_v3.htm

UDDI Version 3.0 Features List:
http://uddi.org/pubs/uddi_v3_features.htm

Registering Web Services in an ebXML Registry:
http://xml.coverpages.org/xmlPapers200305.html#WS-ebXML

OASIS/ebXML Registry Information Model (RIM) Version 2.5:
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrim-2.5.pdf

Analysis of Web Services Standards

97

OASIS/ebXML Registry Services (RS) Specification Version 2.5:
http://www.oasis-open.org/committees/regrep/documents/2.5/specs/ebrs-2.5.pdf

Analysis of Web Services Standards

98

9 The Semantic Web

"The Semantic Web is an extension of the current web in which information is given
well-defined meaning, better enabling computers and people to work in coopera-
tion." -- Tim Berners-Lee, James Hendler, Ora Lassila, The Semantic Web
(http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21&catID=2), Scientific American, May 2001

The W3C has launched an activity known as the Semantic Web, with the goal of making
resources on the Internet accessible to automated tools, rather than limiting the use of
most of the information to human readers (e.g., via a web browser). This is a very broad
concept, and the activity is broad in scope, but the W3C intends to be a facilitator for the
creation of standards relevant to attaining their goals.

The W3C Semantic Web activity primarily includes the Resource Description Frame-
work (RDF) Core and Web Ontology working groups. RDF is a set of layered
specifications into which the principal technologies of the Semantic Web fit. This section
discusses W3C standards activities related to the Semantic Web and related efforts.

9.1 W3C Web Ontology Language (OWL)

The Web Ontology Language (OWL) is a revision of the DAML+OIL web ontology lan-
guage that builds on the development and use of DAML+OIL. OWL is intended to be
used when the information contained in documents needs to be processed by applications,
rather than presented. OWL can be used to explicitly represent the meaning of terms in
vocabularies, their properties, and the relationships between them.

OWL provides three increasingly expressive (in the logical sense) sublanguages, each
designed for use by specific sub-communities of implementers and users.

OWL Lite, the least expressive of the sublanguages, supports those users primarily need-
ing a classification hierarchy and simple constraints. OWL Lite provides a quick migra-
tion path for thesauri and other taxonomies. Owl Lite also has a lower formal complexity
than OWL DL, which is the next more expressive of the sublanguages.

OWL DL supports those users who want the Description Logic properties of maximum
expressiveness while retaining computational completeness (all conclusions are guaran-
teed to be computed), and of decidability (all computations will finish in finite time).
OWL DL includes all OWL language constructs, but they can be used only under certain
restrictions (for example, while a class may be a subclass of many classes, a class cannot
be an instance of another class).

OWL Full is meant for users who want maximum expressiveness with no computational
guarantees. For example, in OWL Full a class can be treated simultaneously as a collec-
tion of individuals and as an individual in its own right. Experience in the development of
automated reasoning systems suggests that is unlikely that any reasoning software will be
able to support complete reasoning for every feature of OWL Full.

Analysis of Web Services Standards

99

9.1.1 Specification and Status

OWL Web Ontology Language Semantics and Abstract Syntax (W3C Candidate Rec-
ommendation 18 August 2003)

http://www.w3.org/TR/owl-semantics/

9.1.2 Main Concepts

Ontology

The OWL Web Ontology Language Use Cases and Requirements document
(http://www.w3.org/TR/webont-req/) gives the following description of an ontology:

An ontology defines the terms used to describe and represent an area of knowledge. On-
tologies are used by people, databases, and applications that need to share domain info r-
mation (a domain is just a specific subject area or area of knowledge, like medicine, tool
manufacturing, real estate, automobile repair, financial management, etc.). Ontologies
include computer-usable definitions of basic concepts in the domain and the relationships
among them (note that here and throughout this document, definition is not used in the
technical sense understood by logicians). They encode knowledge in a domain and also
knowledge that spans domains. In this way, they make that knowledge reusable.

The word ontology has been used to describe artifacts with different degrees of structure.
These range from simple taxonomies (such as the Yahoo hierarchy), to metadata schemes
(such as the Dublin Core), to logical theories. The Semantic Web needs ontologies with a
significant degree of structure. These need to specify descriptions for the following kinds
of concepts:

• Classes (general things) in the many domains of interest

• The relationships that can exist among things

• The properties (or attributes) those things may have

Ontologies are usually expressed in a logic-based language, so that detailed, accurate,
consistent, sound, and meaningful distinctions can be made among the classes, properties,
and relations. Some ontology tools can perform automated reasoning using the ontolo-
gies, and thus provide advanced services to intelligent applications such as: concep-
tual/semantic search and retrieval, software agents, decision support, speech and natural
language understanding, knowledge management, intelligent databases, and electronic
commerce.

9.1.3 Implementations

As of 2003-08-18 the Owl Implementations page
(http://www.w3.org/2001/sw/WebOnt/impls) listed more than a dozen implementations.

9.1.4 Recommendation

Level 2: Ready for early implementers.

Analysis of Web Services Standards

100

Experience with existing implementations shows that they can be used to produce On-
tologies that are interoperable.

9.2 DARPA Agent Markup Language – Semantic (DAML-S)

DAML-based Web Service Ontology (DAML-S) – which is set to become the OWL-
based Web Service Ontology (OWL-S) – is a framework for description of Web Services
at a level of detail sufficient to permit reasoning about services. The usefulness of reason-
ing has been shown in the area of automated planning, where planning software (the
“planner”) is capable of generating schedules for the execution of services that, when
executed, fulfill the goals and objectives that were input to the planner. Planning, particu-
larly continuous planning or planning under uncertainty, requires being able to track the
execution of services; this in turn typically depends on knowledge of the way in which
services do what they do. It is this level of description that DAML-S (and OWL-S) tar-
gets.

9.2.1 Specification and Status

DAML-S (and OWL-S) 0.9 Draft Release 2003-05

http://www.daml.org/services/daml-s/0.9/

9.2.2 Main Concepts

Service

The class Service represents the highest-level concept in the service ontology.

Figure 9.1 The Top Levels of the Service Ontology

Figure 9.1 shows the division of the top of the service ontology into three areas: the Ser-
vice Profile, the Service Model, and the Service Grounding. The Service Profile describes
three types of information for a service: the organization that provides the service, the
function that the service computes, and characteristics of the service, such as its parame-
ters, quality of service provided, and so on. The Service Model describes what the service
does; a Process Model is a subclass of Service Model that describes how a service does
what it does. The Service Grounding describes how to bind to a service, in a way that is
very close to WSDL.

Process

A key concept in OWL-S is the process; a process is an activity carried out by an agent,
which is typically a Web Service or a client of a Web Service. Processes can be atomic,

Analysis of Web Services Standards

101

simple, or various sorts of composite, distinguished by their control constructs (cond i-
tional, choice, parallel, loop, etc.).

Every process can have input and output parameters; input and output parameters may
have optional types, which are the OWL classes that they belong to. Processes can also
have preconditions, which must be true before the process can be started. If the precond i-
tion is not true when the process begins, then some sort of failure occurs. Processes can
also have effects, which can be conditional or unconditional.

9.2.3 Implementations

Several service composition systems using DAML-S and various existing planning sys-
tems have been implemented. A number of these systems were discussed in the ICAPS
2003 Workshop on Planning for Web Services (http://www.isi.edu/info-
agents/workshops/icaps2003-p4ws/program.html).

9.2.4 Recommendation

Level 3: In the research stage, but certainly bears watching.

Recognized world experts are working on this project.

9.3 Topic Maps

The Topic Maps formalism provides a linking technology for working with “information
objects”, such as texts, electronic documents, or knowledge bases. Topic Map technology
can be applied to produce navigational tools such as indexes, cross-references, citation
systems, or glossaries without having to modify the target information objects. The Topic
Maps formalism supports connecting links together in order to create thesaurus- like inter-
faces to information objects. There is also support for filtering access to information ob-
jects, based on user profiles or on security considerations.

9.3.1 Specification and Status

ISO/IEC 13250:2000 Topic Maps (1999-12-03)

http://www.iso-standards- international.com/iso-13250.htm

XML Topic Maps (XTM) 1.0 Version 1.16 (2001/08/06)

http://www.topicmaps.org/xtm/1.0/xtm1-20010806.html

Published Subjects: Introduction and Basic Requirements (OASIS Published Subjects
Technical Committee Recommendation, 2003-06-24)

http://www.oasis-open.org/committees/documents.php?wg_abbrev=tm-pubsubj

9.3.2 Main Concepts

Topics

Everyday language typically talks about topics in relation to texts (‘text’ being a generic
term for a coherent piece of speech or writing). Phrases such as “that question is off
topic” suggest that in everyday usage, the connection between a topic and its related

Analysis of Web Services Standards

102

piece of language can be rather loose, perhaps even looser than the connection between
language and meaning. In the Topic Maps formalism this everyday notion is generalized,
so that topics can be related to any sort of “information object”, and not just texts.

In everyday usage the terms ‘topic’ and ‘subject’ are interchangeable in many contexts.
(In a strict linguistic sense, however, they denote different things. The subject of a sen-
tence or of a proposition is a determinate grammatical or logic entity, the topic is some
much vaguer thing which is dependent on context and intent.) The Topic Maps formalism
systematically uses the term ‘subject’ for what is called a topic, in everyday language.
The term ‘topic’ is then reserved for a formal object in the Topic Maps architecture, a
formal object tha t refers to, or indicates, (in an undefined way) a subject.

Every topic indicates some subject. Since the Topic Maps formalism objectifies topics, it
is often said that the topic “reifies” the subject — or makes the subject “real” for a Topic
Maps system. The creation of a topic that reifies a subject enables a Topic Maps system
to manipulate, process, and assign characteristics to the subject by manipulating, process-
ing, and assigning characteristics to the topic that reifies it. When an address for the sub-
ject is needed, the address of a topic that reifies it – which acts as its surrogate within the
system – can be given.

Associations
Associations express relationships among topics. Topic Maps applications define the na-
ture of such relationships and of the roles played by topics in those relationships.
In logic, relationships are usually considered as being directed: a relationship has a do-
main and a range, or a subject and an object. Within the topic maps formalism the asso-
ciations that express relationships are considered to be inherently multidirectional. In-
stead of directionality, associations use roles to distinguish between the various forms of
involvement members have in them.

Occurrences

Occurrences are the “addresses” of topics (or better, of subjects”) in information objects;
the occurrence may be the “address” of the entire information object, or some range or
position within it.

A topic map is then a set of topics with their occurrences, together with all of the asso-
ciations between those topics.

Topics can also occur as published subjects, which are maintained in subject repositories,
by well-known publishers.

9.3.3 Implementations

The original Topic Maps architecture was dependent on the HyTime architecture. Since
that time a version based on XLink has been developed. There are several implementa-
tions currently available. Topic Maps are being used as an output format for data mining
tools.

9.3.4 Recommendation

Level 2: Ready for early implementers.

Analysis of Web Services Standards

103

Topic Maps is an ISO specification. However, despite commercial promotion, it has not
yet been widely adopted, in the Web Services community. The Topic Maps formalism is
consistent with the Semantic Web vision of annotated web pages, but the connection with
Web Services is unclear.

Analysis of Web Services Standards

104

10 Web Services Monitoring and Management

The concept of monitoring and managing services or systems is not new. The require-
ment to do so has always existed in IT departments. Systems must have specific hooks
exposed for management software to leverage. Modifications are required when new
components or resources are added to the system. The distributed, loosely coupled nature
of Web Services provides both a challenge and opportunity to the classic management
problem.

Management will be a required to successfully operate large distributed, complex systems
built on Web Services. The W3C Web Service Architecture recognizes this fact and has
addressed the management requirements. In addition the OASIS Web Services Distrib-
uted Management (WSDM) (http://www.oasis-open.org/committees/wsdm) Technical
committee in the process of defining the specifications for the management of Web Ser-
vices and management using Web Services.

10.1 Specification and Status

OASIS Web Services Distributed Management (WSDM) V1.0 Specification, which has a
delivery date of Jan 2004.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

10.2 Main Concepts

The W3C Web Service Architecture (WSA) specification claims that WSA implementa-
tions must be manageable, that Web Services instances must be manageable, and further
defines the types of management that must be supported. The specification starts by
dictating that a set of standard metrics be used by implementations. It goes on to require
a base set of management operations including, but not limited to, configuration control
and lifecycle control. It requires a set management events be issued by the WSA to allow
monitoring of the system. It specifies that implementations must have a standard meth-
odology for accessing the management capabilities. This allows management capabili-
ties to be interoperable.

The WSA specification then addresses how individual services are to be managed. It in-
dicates that Web Services should expose metrics, configuration, operations and events.
The management capabilities should be published so that they can be discovered. All
Web Service instances should conform to a standard methodology for accessing the man-
agement operations.

Web Services management falls into two areas Management Using Web Services
(MUWS) and Management of Web Services (MOWS). The goal is to use Web Services
to manage Web Services. This satisfies many of the requirements set forth by the W3C
WSA. The management definitions will be defined by WSDL or GWSDL documents.
This addresses the interoperability, standard access methodology and discovery of man-
agement capabilities.

The OASIS WSDM TC is drafting a specification that defines how the requirements pre-
sented in the WSA should be implemented. The final draft is not due until January 2004.

Analysis of Web Services Standards

105

The WSDM TC membership includes the likes of Hewlett-Packard, Computer Associ-
ates, IBM, BEA, Sun and others. Two different papers have been submitted to the
WSDM, the Web Services Management Framework (WSMF)
(http://devresource.hp.com/drc/specifications/wsmf/WSMF-WSM.jsp)

submitted by HP and the Web Services Manageability (WS-Manageability)
(ftp://www6.software.ibm.com/software/developer/library/ws-manage.pdf) submitted by
IBM, CA and Talking Blocks. There are a lot of similarities between the two papers and
all the authors are members of the technical committee. The committee is currently re-
viewing both papers and creating the draft for the final specification. It appears much of
the WS-Manageability paper will be leveraged in the final specification.

10.3 Recommendation

Level 3: Questionable

Web Services will require management but at this time there is no official standard yet.
There are current products and solutions for addressing management but there is no clear-
cut market leader. These products provide proprietary solutions. Once the draft is final-
ized many vendors will provide implementations of the specifications. It is important to
reevaluate this area after the draft has been released in January 2004.

Analysis of Web Services Standards

106

11 Applications of Web Services

This section includes a sampling of specifications and standards that extend from the core
Web Services specifications, and are particularly relevant to DoD C2 systems. These
specifications are application specific, but demonstrate how the Web Services framework
is being leveraged as a foundation for creating stronger interoperability solutions in some
key areas of distributed computing.

11.1 OASIS Web Services for Remote Portlets

Portals provide personalized access to information, applications, processes and people.
Typically, portals get information from local or remote data sources, e.g. from databases,
transaction systems, syndicated content providers, or remote web sites. They render and
aggregate this information into composite pages to provide information to users in a
compact and easily consumed form. In addition to pure information, many portals also
include applications like e-mail, calendar, organizers, banking, bill presentment, host in-
tegration, etc.

OASIS Web Services for Remote Portlets (WSRP) aims to simplify integration of content
with portals through a standard set of Web Service interfaces that allow integrating appli-
cations to quickly exploit new Web Services as they become available. The specification
discussed in this section was jointly developed by the OASIS WSRP and WSIA (Web
Services for Interactive Applications) Technical Committees.

11.1.1 Specification and Status

This section references the following specification:

• Web Services for Remote Portlets (WSRP) Version 1.0 (OASIS Standard, August
2003)
http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-
specification-1.0.pdf

11.1.2 Main Concepts

Portals: The Integration Challenge

Portals and other Web applications render and aggregate information from different
sources and provide it in a compact and easily consumable form to an end-user. Among
the typical sources of information are Web Services. Traditional data-oriented Web Ser-
vices, however, require aggregating applications to provide specific presentation logic for
each of these Web Services. Furthermore, each aggregating application communicates
with each Web Service via its unique interface. This approach is not well suited to dy-
namic integration of business applications and content as a plug-and-play solution.

The WSRP specification solves this problem by introducing a presentation-oriented Web
Service interface that allows the inclusion of and interaction with content from a Web
Service. It provides a common protocol and a set of interfaces for presentation-oriented
Web Services, allowing aggregating applications to easily “adopt” these Web Services by
utilizing generic proxy code.

Analysis of Web Services Standards

107

Portlets

Portlets are presentation-oriented, interactive web application components that are aggre-
gated and displayed by a portal. Portal content is often provided by external services and
displayed by specific local portlets running on the portal. The WSRP mechanism for ag-
gregating portlets using proxies is shown in the following figure:

Figure 11.1 WSRP Mechanism for Aggregating Portlets using Proxies

Source: WSRP Version 1.0 Specification

In the above figure, two Web Services that provide HR and weather information are ag-
gregated at an Employee portal using proxies.

11.1.3 Assessment

Table 11.1 Assessment of WSRP

Category Information Rating
Specification phase OASIS Standard HIGH

Open standard YES HIGH
Potential to become open

standard
 N/A

Rate of advancement N/A
Potential impact on Web Ser-

vices
 HIGH

Maturity level of consortium 10 years HIGH
Number of implementations 8 MEDIUM

11.1.4 Implementations

The following are three examples of identified implementations:

• Plumtree: http://xml.coverpages.org/PlumtreePortlet.html
• BEA:http://www.bea.com/content/news_events/white_papers/BEA_WL_platform

7_ds.pdf
• Sun Microsystems: http://www.sun.com/smi/Press/sunflash/2002-

03/sunflash.20020327.4.html

11.1.5 Recommendation

Level 2: Emerging

Analysis of Web Services Standards

108

We believe that WSRP will have a large impact on Web Services through its ability to
seamlessly deliver aggregated content to a centralized location. There has also been a
strong emphasis in the federal government on portal technology in recent years, which
makes WSRP even more attractive. However, although a fair number of WSRP imple-
mentations are available, we believe that the freshness of this standard warrants a waiting
period before use.

There has also been a strong emphasis in the federal government on portal technology in
recent years, which has yielded a high need for open standards in the area of portals and
Web Services. Although currently the only prominent open standard in this area, we be-
lieve that WSRP will have a large impact on Web Services through its ability to seam-
lessly deliver aggregated content to a centralized location. Although a fair number of
WSRP implementations are available, we believe that the freshness of this standard war-
rants a waiting period before use.

11.1.6 References

“Enabling Interactive, Presentation-Oriented Content Services Through the WSRP Stan-
dard”:
http://www.oasis-open.org/committees/download.php/3657/WSRP_paper.html

11.2 Geospatial Web Services

The OpenGIS Consortium (OGC) has actively promoted the development and prototyp-
ing of specifications for interoperable Web Services that can share and process geospatial
information, at least since 1997, when the first Web Mapping testbed took place. Since
then, they have moved into the areas of sensors and sensor Web Services, and into loca-
tion-based Web Services. In this section we only consider OGC Web Services that are at
least far enough along in the specification process to be publicly available. For this to
have happened a significant number of different implementations have to have been
shown to interoperate.

11.2.1 Specification and Status

OpenGIS Reference Model - The OpenGIS Reference Model (ORM) provides an archi-
tecture framework for the ongoing work of the OGC. Further, the ORM provides a
framework for the OGC Technical Baseline. The OGC Technical Baseline consists of the
currently approved OpenGIS Specifications as well as for a number of candidate specifi-
cations that are currently in progress. http://www.opengis.org/info/orm/03-040.pdf

OpenGIS Web Map Service (WMS) Implementation Specification - A Web Map
Service produces maps of geo-referenced data. A map is a visual representation of geo-
data; a map is not the data itself. This specification defines three WMS operations: Get-
Capabilities returns service- level metadata, which is a description of the service's infor-
mation content and acceptable request parameters; GetMap returns a map image whose
geospatial and dimensional parameters are well-defined; GetFeatureInfo (optional) re-
turns information about particular features shown on a map.
http://www.opengis.org/techno/specs/01-068r3.pdf

Analysis of Web Services Standards

109

OpenGIS Geography Markup Language (GML) Implementation Specification -
Geography Markup Language is an XML grammar written in XML Schema for the mod-
eling, transport, and storage of geographic information.
http://www.opengis.org/techno/documents/02-023r4.pdf

OpenGIS Web Feature Service Implementation Specification - The OGC Web Fea-
ture Service allows a client to retrieve geospatial data encoded in Geography Markup
Language (GML) from multiple Web Feature Services.
http://www.opengis.org/techno/specs/02-058.pdf

OpenGIS Filter Encoding Implementation Specification - This specification defines
an XML encoding for filter expressions based on definitions from the OpenGIS Common
Catalog Query Language as described in the OpenGIS Catalog Interface Implementation
Specification, Version 1.0. http://www.opengis.org/techno/specs/02-059.pdf

OpenGIS Styled Layer Descriptor Implementation Specification - This specification
addresses the need for geospatial consumers (either humans or machines) to control the
visual portrayal of data. It can be used to portray the output of Web Map Servers, Web
Feature Servers and Web Coverage Servers. http://www.opengis.org/techno/specs/02-
070.pdf

Web Map Context Documents - The present Context specification states how a specific
grouping of one or more maps from one or more map servers can be described in a port-
able, platform-independent format for storage in a repository or for transmission between
clients. A Context document includes information about the server(s) providing layer(s)
in the overall map, the bounding box and map projection shared by all the maps, suffi-
cient operational metadata for Client software to reproduce the map, and ancillary meta-
data used to annotate or describe the maps and their provenance for the benefit of human
viewers. A Context document is structured using XML.
http://www.opengis.org/techno/specs/03-036r2.pdf

11.2.2 Main Concepts

Abstract Specifications

All of the specifications or candidate specifications listed above are derived from abstract
services definitions, which are specialized to use Web Services as their distributed com-
puting platform. As an organization OGC spent many years first developing a large body
of abstract specifications for data and services in the geospatial arena. These specifica-
tions cover all the fundamental concepts and technologies of the geospatial industry, and
use UML as a description language.

Interoperability

The geospatial industry (principally GIS, mapping, and remote sensing) has long had the
goal of providing interoperable services for sharing and processing of geospatial informa-
tion. A number of government agencies are responsible for disseminating mapping in-
formation in a timely manner. Traditional paper maps do not always fulfill this goal.
NASA and the commercial remote sensing companies collect huge volumes of geospatial
information on a daily basis, which needs to be disseminated and integrated with other
information. Location-based information is another component of the equation. Furthe r-

Analysis of Web Services Standards

110

more, traditionally, different vendors have specialized in geospatial data storage, and in
geospatial information display. All of this has placed a huge demand on the geospatial
industry to achieve interoperability.

11.2.3 Implementations

A large and growing number of implementations are available.

11.2.4 Recommendation

Level 1: Ready for use.

Business, government, and military organizations, principally in Japan, Australia, the EU,
Canada, and the US, have adopted OGC standards as the preferred solution for interoper-
able geospatial data sharing and processing.

11.3 Sensor Web Services

The Sensor Model Language (SensorML) is a set of XML Schemas, which define sensor
descriptions in XML. A sensor description describes the characteristics that are required
for processing, geo-registering, and assessing the quality of measurements from sensor
systems. SensorML schemas work together with the Observations and Measurement
schemas, which are defined in a separate specification.

11.3.1 Specification and Status

Sensor Model Language (SensorML) for In-situ and Remote Sensors Specification Ver-
sion 0.7 (OGC Discussion Paper 2002-12-20)

http://www.opengis.org/techno/discussions/02-026r4.pdf

Observations and Measurements Version 0.9.2 (OGC Recommendation 2003-02-04)

http://www.opengis.org/techno/discussions/03-022r3.pdf

11.3.2 Main Concepts

Observables

Observables are properties of physical entities and phenomena that are capable of being
measured and quantified. Each of these can be classified as an Observable type and can
be referenced in an Observables dictionary. Observable type definitions include, for ex-
ample, properties such as temperature, count, rock type, chemical concentration, or radia-
tion emissivity.

Sensors
Sensors are systems that are capable of observing and measuring particular properties.
Either by design or as a result of operational conditions, these sensors have particular re-
sponse characteristics that can be used to determine the values of certain measurements,
as well as assess the quality of these measurements. In addition to the response character-
istics, the sensor system has properties of location and orientation that allow one to asso-
ciate the measured values with a particular geospatial location at a particular time.

Analysis of Web Services Standards

111

Observations and Measurements

O&M defines an observation to be an event with a result which is a value describing
some phenomenon. An observation feature binds the result to the (spatiotemporal) loca-
tion where it was made. An observation involves a procedure to determine the value,
which may involve a sensor or observer, analytical procedure, simulation or other nu-
merical process. An observation is modeled as a feature within the context of the OGC
feature model.

Figure 11.2 O&M Observation Object Model

An observation results in an estimate of the value of a property or phenomenon related to
the target of the observation. Values are of various data types, including the primitive
types category, quantity, count and boolean, time, location and geometry. The value nor-
mally requires a reference system to provide the context for its interpretation and valid
operations on it. Common reference systems are the unit of measure for a quantity, a dic-
tionary or “code space” for a category, a spatial reference system for location and geome-
try, and a temporal reference system for time values. An observed value may be semant i-
cally typed according to the phenomenon being observed or observable, sometimes called
measurand. Observed values may have other properties, such as quality indicators.

11.3.3 Implementations

There are five known implementations of SensorML actively involved in the community.

11.3.4 Recommendation

Level 2-3: In the prototyping stage.

Although a tremendous amount of interest has occurred, SensorML is still in the middle
stages of the specification process.

Analysis of Web Services Standards

112

12 Preliminary Conclusions and Recommendations

This report represents the analysis of current Web Services specifications, standards, and
proposed standards emerging primarily from commercial industry consortiums, with a
focus on standards that are relevant to the development of next generation DoD Com-
mand and Control (C2) systems. This section is called “preliminary” because it summa-
rizes the initial conclusions and recommendations drawn from the initial analysis effort.
These conclusions will be augmented by the results of follow-up analysis tasks exploring
C2 user requirements and the emerging Web Services development environment.

In general, we believe Web Services are usable and useful today, but implementers must
get past the general myth that the current Web Services standards guarantee interoperabil-
ity. Interoperability is enhanced by these standards, mainly through simplification, such
as using ubiquitous communications channels (HTTP), and a simplified, man-readable,
yet structured and flexible data format (XML). However, the key to interoperability is
the semantics of the connection. Additional standards including XML Schema, SOAP,
and WSDL also add value, but still do not clearly convey the semantics without human
intervention. To solve the problem additional specifications (including application-
specific specifications) need to be adopted, but thanks to the benefits of Web Services,
the scope of these specifications can be narrowed.

We believe the DoD should continue and expand upon current efforts to use Web Ser-
vices standards as an alternative to the stove-piped, proprietary, and often platform-
centric means of creating systems. Providing a more open environment to support access
to the services and data of C2 systems will foster new and more creative solutions lever-
aging a wide array of “knowledge” available from sensors and databases.

The following statements summarize, based on the topic areas of this report, other con-
clusions and recommendations with regard to the Web Services standards environment:

• "Base" Web Services Standards

In terms of the "base" Web Services standards (such as Web Services Definition
Language—WSDL—and Simple Object Access Protocol—SOAP), we are seeing
these standards advance within W3C. These standards are being adopted broadly
but still show some immaturity in that they don’t yet guarantee unambiguous in-
teroperability. There is ongoing work in this area to refine the specifications,
from within and without.

• Web Services Architectures/Frameworks

As adoption of Web Services has grown, the need to define more concrete archi-
tectures has grown as well. There are multiple efforts to do so that bear close
watching. We believe that the major effort in this area is the W3C Web Services
Architecture.

The Global XML Web Services Architecture (GXA) specifications looked prom-
ising at one point, but we are somewhat concerned about the slow pace at which
the GXA specifications are being advanced into open standards consortiums.
However, we believe that they bear close watching because of the wide range of
functionality that they cover, and because one of the GXA specifications (WS-

Analysis of Web Services Standards

113

Security) has already been transferred into an open standards consortium (OA-
SIS).

We do not recommend that DISA adopt the ebXML framework as a whole, but
instead consider individual specifications such as ebXML Registry.

• Web Services Security

A large number of open standards (and potential open standards) are currently
emerging in the realm of security. We foresee the current lack of overall robust
security for Web Services improving greatly in the next two years, as many of the
specifications mature and others arise. The current lack of overall robust security
makes it difficult to execute Web Services scenarios that stretch beyond "point-to-
point" interactions; we therefore recommend that DISA utilize Web Services at
this time, but in point-to-point interactions using established mechanisms such as
traditional Public Key Infrastructure (PKI) and Secure Socket Layer/Transport
Layer Security (SSL/TLS).

We believe that the emerging OASIS WS-Security specification will have the
largest single impact on the advancement of Web Services of any of the current
Web Services security specifications.

We recommend that OASIS Security Assertion Markup Language (SAML) be
used at this time, as it has gained wide acceptance in many different industries
and settings. We foresee the number of SAML implementations growing steadily
in the medium- and long-term future.

• Web Services Choreography and Coordination

The area of choreography and coordination is a relatively new and much-
anticipated area for Web Services. We believe that advancements in this area will
advance Web Services to new heights that will enable inter-organization and in-
ter-agency collaborations.

We believe that the work of the W3C Web Services Choreography Working
Group is highly important and bears close watching, as is the emerging work of
the OASIS Web Services Business Process Execution Language (WS BPEL)
Technical Committee.

• Web Services and Discovery

We believe that Universal Description, Discovery and Integration (UDDI) serves
a very important purpose, for both DISA and the federal government, as usage of
Web Services increases, and its adoption is currently on the rise. However, the
current UDDI specifications (versions 2.0 and 3.0) are still somewhat immature
and are not specific enough to guarantee portability or interoperability. The
weaknesses can be overcome by limiting the use of UDDI implementations to
only standard features and augmenting the UDDI usage by adopting standard
practices to achieve the goals for discovery.

Also, the taxonomies for UDDI discovery are (intentionally) not standardized and
typically very limited in their ability to represent complex queries. In the future,

Analysis of Web Services Standards

114

we feel that this is a natural fit with some of the emerging ontology standards
(e.g., OWL), which could be used to allow searches based on concepts rather than
on specific terms that must now be matched exactly.

Because the UDDI Version 3.0 specification is still under development, we rec-
ommend that DISA consider using UDDI Version 2.0 specification implementa-
tions for the time being in order to advance its Web Services efforts, and upgrade
to Version 3.0 when it becomes an OASIS standard and when an acceptable num-
ber of implementations are available.

We believe that the current adoption of ebXML Registry has, in general, been
very low. However, as adoption of XML grows both within DISA and the federal
government—particularly the creation of XML schemas—we foresee the need for
an XML registry such as ebXML Registry increasing. Once the OASIS/ebXML
Registry Version 2.5 specifications reach a Version 3.0 status, an assessment
should be made regarding available implementations and further consideration
should be given to implementing ebXML Registry.

We believe that ebXML Registry and UDDI will co-exist and continue to be util-
ized in their areas of strength: ebXML Registry for discovery and collaboration,
and UDDI for discovery.

• Web Services and Reliable Messaging

We believe that reliable messaging is a necessity for Web Services. At this time,
the only open standard that addresses reliable messaging is the ebXML Messag-
ing Service (ebMS) specification, but there has not been widespread adoption of
this standard yet. At the moment, vendor-specific MOM products dominate the
solution space. There are several vendor specifications that have recently
emerged, and an OASIS Technical Committee (Web Services Reliable Messag-
ing—WSRM) is in the process of creating an open standard for reliable messag-
ing. This area bears close watching, particularly to see which specifications
emerges as the leader from the current set of specifications.

• Web Services Interoperability

The Web Services Interoperability Organization (WS-I) is the leading organiza-
tion that defines how to achieve interoperability between Web Services standards.
We believe its work is highly important, but recommend that DISA hold off from
utilizing any of its profiles (such as the WS-Basic Profile) until more vendor im-
plementations emerge.

• Semantic Web Services

The area of Semantic Web Services is producing specifications (such as the OWL
Web Service Ontology Language, OWL-S) that are currently in the research
stages, but bare close watching.

• Web Services Monitoring and Management

This is an emerging area that we believe will have highly important results for
Web Services. The OASIS Web Services Distributed Management (WSDM) TC

Analysis of Web Services Standards

115

is in the process of creating specifications that will be released in January 2004.
We recommend that DISA eva luate these specifications once they are released.

• Standards Related to Applications of Web Services

In the area of user-facing technologies, we believe that OASIS Web Services for
Remote Portlets (WSRP) will have a large impact on Web Services through its
ability to seamlessly deliver aggregated content to a centralized location. There
has also been a strong emphasis in the federal government on portal technology in
recent years, which makes WSRP even more attractive. However, although a fair
number of WSRP implementations are available, we believe that the freshness of
this standard warrants a waiting period before use.

In Command and Control, the “map”—i.e., geospatial data and displays—are
critical and pervasive in C2 systems. The OGC, an international consortium with
significant DoD involvement, has developed a number of standards for geospatial
data sharing and processing, primarily using Web Services technologies. DoD
system acquisition continues to migrate more and more toward using COTS prod-
ucts versus building solutions. We believe these OGC standards will play a key
role both in promoting interoperability between C2 systems, as well as in support-
ing competitive procurement by providing the Government options when select-
ing among competing geospatial products.

Analysis of Web Services Standards

116

Appendix A – Referenced Online Content

The following pages reflect the content of some of the web pages referenced in this
document.

Analysis of Web Services Standards

117

URL: http://lists.w3.org/Archives/Public/www-ws-arch/2003Aug/0047.html
Subject: RE: Definition for a Web Service
From: Cutler, Roger (RogerCutler) <RogerCutler@chevrontexaco.com>
Date: Mon, 11 Aug 2003 14:42:54 -0500
Message-ID:
<7FCB5A9F010AAE419A79A54B44F3718E01817F45@bocnte2k3.boc.chevrontexaco.net>
To: "Anne Thomas Manes" <anne@manes.net>, "Jean-Jacques Moreau" <jean-
jacques.moreau@crf.canon.fr>, www-ws-arch@w3.org

We have -- and I personally think that this is unfortunate but it does
represent a clear, consensus-driven decision by the WG that I accept,
albeit reluctantly -- limited the scope of what we are willing to call
Web Services and discuss in our architecture to thingies that are
described by WSDL and use SOAP -- as you can see in the definition.
That is, as far as we are concerned thingies described (only) by text
documents or DAML (unless DAML is somehow integrated into WSDL, which I
understand may not be an unreasonable expectation) are not Web Services.
This was a highly contentious issue and the resolution of it was so
difficult that I think it would take some sort of dramatic change in the
situation to convince people in the WG to reopen it. As I said, I don't
like this resolution, but I would like reopening the issue a WHOLE LOT
LESS!

That was not, however, the thrust of your message. I personally agree
that Web Services are "important" resources and, for that reason, should
be identified by a URI. I do not know how many others on the WG would
also agree, but I would guess at least some. Or at least would agree
that "it sure would be nice" if Web Services were identified by a URI.

It is my perception that the WG is, in effect, unwilling to do things
that are not compatible with what the WS-Desc WG is doing/has done, and
is also unwilling to tell the WS-Desc WG what to do. I would be very
surprised, however, if anyone on the WSA-WG would actually object
violently if the WS-Desc WG were somehow to decide to use URI's to
identify Web Services.

Obviously the comments above are my personal take on the situation ...
Another member of the WG might view things quite differently and I am in
no way a spokesman for the WG.

-----Original Message-----
From: Anne Thomas Manes [mailto:anne@manes.net]
Sent: Monday, August 11, 2003 1:02 PM
To: Cutler, Roger (RogerCutler); Jean-Jacques Moreau; www-ws-arch@w3.org
Subject: Re: Definition for a Web Service

I raised a discussion on the WS-Desc list suggesting that they really
should identify a Web Service by a URI rather than just a Qname. I was a
little surprised by the resistence to such a concept. I got the sense
that a lot of people didn't understand what in fact the URI was meant to
identify.

I don't know what the end decision on the discussion was. I believe it
was discussed at the last meeting.

But I do think that the architecture group should have some influence on
the discussion. If the architecture group believes that a Web Service
should be named by a URI, then the WS-Desc team should provide a means
to capture that name in the WSDL description.

From my perspective, a Web Service is an "important" resource, and as
the Web Architecture says, all "important" resources should have a URI.

Analysis of Web Services Standards

118

I also expect that a Web Service may be described by a variety of
description languages (WSDL, DAML, text documents, etc.) and so there
ought to be a means of referring to the Web Service that doesn't depend
on just one description language (a URI derived from the wsdl:service
Qname).

Anne

----- Original Message -----
From: "Cutler, Roger (RogerCutler)" <RogerCutler@chevrontexaco.com>
To: "Jean-Jacques Moreau" <jean-jacques.moreau@crf.canon.fr>;
<www-ws-arch@w3.org>
Sent: Monday, August 11, 2003 10:47 AM
Subject: RE: Definition for a Web Service

>
> I think that this happened because of all the confusion about URI's
> and QNames. As I understand it (and I am very willing to admit that I

> understand this imperfectly), just about everyone concerned would be
> VERY happy to say that Web Services are identified by URI's -- except
> that currently in WSDL they are identified by a Qname -- which is not
> exactly a URI but can be mapped to a URI. This, at the least, adds a
> layer of confusion to any conversation on this subject. I think that
> the basic thinking was that the "Web-related standards" would lead one

> sort of inevitably to URI's, and that the detailed issues could be
> dealt with ... in the detailed sections, I guess.
>
> -----Original Message-----
> From: Jean-Jacques Moreau [mailto:jean-jacques.moreau@crf.canon.fr]
> Sent: Monday, August 11, 2003 3:45 AM
> To: www-ws-arch@w3.org
> Subject: Definition for a Web Service
>
>
>
> Thanks for the new draft; obviously, this is the result of a lot of
> efforts!
>
> Regarding the new definition for a Web Service: apart from being more
> specific (WSDL, SOAP, HTTP), which I like, the other major difference
> seems to be that a Web Service is no longer identified by a URI. Is
> this
>
> intentional? Shouldn't this be added back?
>
> <previousDefinition>
> A Web Service is a software system identified by a URI [...].
> </previousDefinition>
>
> Comments?
>
> Jean-Jacques.
>
> Champion, Mike wrote:
>
> > Update from the W3C publication team:
> >
> > New WD of "Web Services Architecture" Document is available at :
> > http://www.w3.org/TR/2003/WD-ws-arch-20030808/

Analysis of Web Services Standards

119

URL: http://lists.w3.org/Archives/Public/www-ws-arch/2003Sep/0086.html
Subject: Myth of Loose coupling
From: David Orchard <dorchard@bea.com>
Date: Fri, 26 Sep 2003 18:01:02 -0700
To: <www-ws-arch@w3.org>
Message-ID: <012501c3851f$be6cfd40$470ba8c0@beasys.com>

I'm posting a link as I was asked to before on the start of a discussion on
loose coupling.

http://lists.w3.org/Archives/Public/www-ws-arch/2003Jan/0115.html

I will say that I have come to have a somewhat revised view on loose
coupling. I would say that loose coupling is a combination of properties:
- extensibility, so that additional information can be added without
breaking receivers
- evolvable changes in the interface, so compatible changes can be made.
- rapidity of changes in the interface
- on the web, the generic interface constraint, means that applications
(browsers/search engines) are not dependent upon each site's protocol.
- asynchrony, so that senders and receivers are decoupled in time
- stateless messaging, so that senders need fewer messages and hence less
chance of communication errors
- use of URIs for identifying resources. This means that identifiers are
very constrained and easily transferred.
- No vendor specific or platform specific constraints on any of the
technologies used.

I think one can then say that loose coupling is a property that is a
combination of other properties as I've listed above. And it seems that
changing each property/constraint increases the coupling. For example, a
Web Service with no extensibility, that evolves rapidly in incompatible
ways, an application specific interface, synchronous, stateful messages is
tightly coupled with it's clients.

This would show that the Web is "mostly" loosely coupled because of the
extensibility/evolvability in http/html, slow changes in html vocabularies,
stateless messaging, vendor/platform agnostic. Yet it is tightly coupled in
being synchronous.

Another way of looking at this is that Web Service technologies do not per
se mean a service is loosely coupled, it is only through the application of
constraints to be loosely coupled.

Seem reasonable?

I think this notion of a "combination" property is similar to the visibility
property, which I argue is a combination of simplicity and percieved
performance properties.

Cheers,
Dave

